Exact Mass: 664.4702643999999

Exact Mass Matches: 664.4702643999999

Found 451 metabolites which its exact mass value is equals to given mass value 664.4702643999999, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

DG(18:2(9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C43H68O5 (664.5066478)


DG(18:2(9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C43H68O5 (664.5066478)


DG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:3(6Z,9Z,12Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propan-2-yl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C43H68O5 (664.5066478)


DG(18:3(6Z,9Z,12Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(6Z,9Z,12Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:3(9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

(2S)-1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C43H68O5 (664.5066478)


DG(18:3(9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:3(9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propan-2-yl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C43H68O5 (664.5066478)


DG(18:3(9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:4(6Z,9Z,12Z,15Z)/22:4(7Z,10Z,13Z,16Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propan-2-yl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoate

C43H68O5 (664.5066478)


DG(18:4(6Z,9Z,12Z,15Z)/22:4(7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/22:4(7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the adrenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:4(6Z,9Z,12Z,15Z)/22:4(7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/22:4(7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the adrenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3(5Z,8Z,11Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propan-2-yl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C43H68O5 (664.5066478)


DG(20:3(5Z,8Z,11Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(5Z,8Z,11Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:3(5Z,8Z,11Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(5Z,8Z,11Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3(8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

(2S)-1-hydroxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propan-2-yl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C43H68O5 (664.5066478)


DG(20:3(8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:3(8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:4(5Z,8Z,11Z,14Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propan-2-yl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C43H68O5 (664.5066478)


DG(20:4(5Z,8Z,11Z,14Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of two chains of arachidonic acid at the C-1 and C-2 positions. The arachidonic acid moieties are derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propan-2-yl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C43H68O5 (664.5066478)


DG(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:4(8Z,11Z,14Z,17Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

(2S)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C43H68O5 (664.5066478)


DG(20:4(8Z,11Z,14Z,17Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(8Z,11Z,14Z,17Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

(2S)-1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propan-2-yl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C43H68O5 (664.5066478)


DG(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of two chains of eicsoatetraenoic acid at the C-1 and C-2 positions. The eicsoatetraenoic acid moieties are derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(5Z,8Z,11Z)/0:0)

(2S)-3-hydroxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C43H68O5 (664.5066478)


DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(5Z,8Z,11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(5Z,8Z,11Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of mead acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the mead acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)/0:0)

(2S)-3-hydroxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C43H68O5 (664.5066478)


DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:4(7Z,10Z,13Z,16Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoate

C43H68O5 (664.5066478)


DG(22:4(7Z,10Z,13Z,16Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:4(7Z,10Z,13Z,16Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/18:3(6Z,9Z,12Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C43H68O5 (664.5066478)


DG(22:5(4Z,7Z,10Z,13Z,16Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/18:3(9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C43H68O5 (664.5066478)


DG(22:5(4Z,7Z,10Z,13Z,16Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C43H68O5 (664.5066478)


DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C43H68O5 (664.5066478)


DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:2(9Z,12Z)/0:0)

(2S)-3-hydroxy-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C43H68O5 (664.5066478)


DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:2(9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:2(9Z,12Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the linoleic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:3n9/0:0/20:5n3)

(2R)-2-hydroxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C43H68O5 (664.5066478)


DG(20:3n9/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:3n9/0:0/20:5n3), in particular, consists of one chain of mead acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The mead acid moiety is derived from fish oils, liver and kidney, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:3n6/0:0/22:5n6)

(2R)-2-Hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoic acid

C43H68O5 (664.5066478)


DG(18:3n6/0:0/22:5n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n6/0:0/22:5n6), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The g-linolenic acid moiety is derived from animal fats, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:3n6/0:0/22:5n3)

(2S)-2-Hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoic acid

C43H68O5 (664.5066478)


DG(18:3n6/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n6/0:0/22:5n3), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The g-linolenic acid moiety is derived from animal fats, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:3n6/0:0/20:5n3)

(2R)-2-Hydroxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl (8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoic acid

C43H68O5 (664.5066478)


DG(20:3n6/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:3n6/0:0/20:5n3), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:4n6/0:0/20:4n6)

2-Hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoic acid

C43H68O5 (664.5066478)


DG(20:4n6/0:0/20:4n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1 C-2, or C-3 positions. DG(20:4n6/0:0/20:4n6), in particular, consists of two chains of arachidonic acid at the C-1 and C-3 positions. The arachidonic acid moieties are derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:4n6/0:0/20:4n3)

(2S)-2-Hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoic acid

C43H68O5 (664.5066478)


DG(20:4n6/0:0/20:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:4n6/0:0/20:4n3), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-3 position. The arachidonic acid moiety is derived from animal fats and eggs, while the eicosatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(22:4n6/0:0/18:4n3)

(2R)-2-Hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoic acid

C43H68O5 (664.5066478)


DG(22:4n6/0:0/18:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(22:4n6/0:0/18:4n3), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of stearidonic acid at the C-3 position. The adrenic acid moiety is derived from animal fats, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(22:5n6/0:0/18:3n3)

(2S)-2-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C43H68O5 (664.5066478)


DG(22:5n6/0:0/18:3n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(22:5n6/0:0/18:3n3), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of a-linolenic acid at the C-3 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:3n3/0:0/22:5n3)

(2R)-2-Hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoic acid

C43H68O5 (664.5066478)


DG(18:3n3/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n3/0:0/22:5n3), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:4n3/0:0/20:4n3)

2-Hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoic acid

C43H68O5 (664.5066478)


DG(20:4n3/0:0/20:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1 C-2, or C-3 positions. DG(20:4n3/0:0/20:4n3), in particular, consists of two chains of eicosatetraenoic acid at the C-1 and C-3 positions. The eicosatetraenoic acid moieties are derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

Diarachidonyl diglyceride

1-Hydroxy-3-(icosa-5,8,11,14-tetraenoyloxy)propan-2-yl icosa-5,8,11,14-tetraenoic acid

C43H68O5 (664.5066478)


   

Paliperidone Palmitate

3-{2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl}-2-methyl-4-oxo-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-9-yl hexadecanoic acid

C39H57FN4O4 (664.4363613999999)


   

PA(13:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C34H65O10P (664.431512)


PA(13:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/13:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C34H65O10P (664.431512)


PA(18:1(12Z)-2OH(9,10)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/13:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H65O10P (664.431512)


PA(a-13:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/a-13:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H65O10P (664.431512)


PA(18:1(12Z)-2OH(9,10)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/a-13:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H65O10P (664.431512)


PA(i-13:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/i-13:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C34H65O10P (664.431512)


PA(18:1(12Z)-2OH(9,10)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/i-13:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

DG(16:0/PGE2/0:0)

(2S)-3-Hydroxy-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl hexadecanoic acid

C39H68O8 (664.4913928000001)


DG(16:0/PGE2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(16:0/PGE2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGE2/16:0/0:0)

(2S)-1-Hydroxy-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propan-2-yl hexadecanoic acid

C39H68O8 (664.4913928000001)


DG(PGE2/16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGE2/16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(16:0/0:0/PGE2)

(2R)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl hexadecanoic acid

C39H68O8 (664.4913928000001)


DG(16:0/0:0/PGE2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGE2/0:0/16:0)

(2S)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl hexadecanoic acid

C39H68O8 (664.4913928000001)


DG(PGE2/0:0/16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(16:0/PGD2/0:0)

(2S)-3-Hydroxy-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl hexadecanoic acid

C39H68O8 (664.4913928000001)


DG(16:0/PGD2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(16:0/PGD2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGD2/16:0/0:0)

(2S)-1-Hydroxy-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propan-2-yl hexadecanoic acid

C39H68O8 (664.4913928000001)


DG(PGD2/16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGD2/16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(16:0/0:0/PGD2)

(2R)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl hexadecanoic acid

C39H68O8 (664.4913928000001)


DG(16:0/0:0/PGD2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGD2/0:0/16:0)

(2S)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl hexadecanoic acid

C39H68O8 (664.4913928000001)


DG(PGD2/0:0/16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(16:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0)

(2S)-1-(Hexadecanoyloxy)-3-hydroxypropan-2-yl (5S,6S,7E,9E,11Z,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid

C39H68O8 (664.4913928000001)


DG(16:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(16:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:0/0:0)

(2S)-2-(Hexadecanoyloxy)-3-hydroxypropyl (5R,6R,7E,9E,11Z,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid

C39H68O8 (664.4913928000001)


DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(16:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

(2R)-3-(hexadecanoyloxy)-2-hydroxypropyl (5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoate

C39H68O8 (664.4913928000001)


DG(16:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/16:0)

(2S)-3-(hexadecanoyloxy)-2-hydroxypropyl (5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoate

C39H68O8 (664.4913928000001)


DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-16:0/PGE2/0:0)

(2S)-3-Hydroxy-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl 14-methylpentadecanoic acid

C39H68O8 (664.4913928000001)


DG(i-16:0/PGE2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-16:0/PGE2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGE2/i-16:0/0:0)

(2S)-1-Hydroxy-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propan-2-yl 14-methylpentadecanoic acid

C39H68O8 (664.4913928000001)


DG(PGE2/i-16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGE2/i-16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-16:0/0:0/PGE2)

(2R)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl 14-methylpentadecanoic acid

C39H68O8 (664.4913928000001)


DG(i-16:0/0:0/PGE2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGE2/0:0/i-16:0)

(2S)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl 14-methylpentadecanoic acid

C39H68O8 (664.4913928000001)


DG(PGE2/0:0/i-16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-16:0/PGD2/0:0)

(2S)-3-Hydroxy-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl 14-methylpentadecanoic acid

C39H68O8 (664.4913928000001)


DG(i-16:0/PGD2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-16:0/PGD2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGD2/i-16:0/0:0)

(2S)-1-Hydroxy-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propan-2-yl 14-methylpentadecanoic acid

C39H68O8 (664.4913928000001)


DG(PGD2/i-16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGD2/i-16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-16:0/0:0/PGD2)

(2R)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl 14-methylpentadecanoic acid

C39H68O8 (664.4913928000001)


DG(i-16:0/0:0/PGD2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGD2/0:0/i-16:0)

(2S)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl 14-methylpentadecanoic acid

C39H68O8 (664.4913928000001)


DG(PGD2/0:0/i-16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-16:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0)

(2S)-1-Hydroxy-3-[(14-methylpentadecanoyl)oxy]propan-2-yl (5S,6S,7E,9E,11Z,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid

C39H68O8 (664.4913928000001)


DG(i-16:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-16:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-16:0/0:0)

(2S)-3-hydroxy-2-[(14-methylpentadecanoyl)oxy]propyl (5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoate

C39H68O8 (664.4913928000001)


DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-16:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

(2R)-2-Hydroxy-3-[(14-methylpentadecanoyl)oxy]propyl (5R,6R,7E,9E,11Z,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid

C39H68O8 (664.4913928000001)


DG(i-16:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/i-16:0)

(2S)-2-hydroxy-3-[(14-methylpentadecanoyl)oxy]propyl (5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoate

C39H68O8 (664.4913928000001)


DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/i-16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   
   
   
   
   

20,44-Dihydroxy-4,8,14,23,27,42-hexatetracontahexaene-1,18,21,45-tetrayn-3-one|petroformyne-8

20,44-Dihydroxy-4,8,14,23,27,42-hexatetracontahexaene-1,18,21,45-tetrayn-3-one|petroformyne-8

C46H64O3 (664.4855193999999)


   

dammar-24-en-3beta,11alpha,20(S)-triol 3-O-beta-D-2-O-acetylglucopyranoside

dammar-24-en-3beta,11alpha,20(S)-triol 3-O-beta-D-2-O-acetylglucopyranoside

C38H64O9 (664.4550094)


   

(23E)-(12R,20S)-12,20-dihydroxy-25-methoxy-3,4-secodammara-4(28),23-dien-3-oic acid ethyl ester 12-O-alpha-L-arabinopyranoside|cyclocarioside G

(23E)-(12R,20S)-12,20-dihydroxy-25-methoxy-3,4-secodammara-4(28),23-dien-3-oic acid ethyl ester 12-O-alpha-L-arabinopyranoside|cyclocarioside G

C38H64O9 (664.4550094)


   
   

methyl (1E,5S,9R,10S,12Z,14aS,17S,21R,24S,26aS,26bS)-3,5,8,9,10,11,14a,15,16,17,18,19,20,21,22,23,24,25,26,26b-icosahydro-10-hydroxy-2,6,10,13,17,21-hexamethyl-15,22,25-trioxo-24-(propan-2-yl)-5,9-epoxybenzo[1,2-a:3,4-a?]di[14]annulene-26a(4H)-carboxylate|sarcophytolide J

methyl (1E,5S,9R,10S,12Z,14aS,17S,21R,24S,26aS,26bS)-3,5,8,9,10,11,14a,15,16,17,18,19,20,21,22,23,24,25,26,26b-icosahydro-10-hydroxy-2,6,10,13,17,21-hexamethyl-15,22,25-trioxo-24-(propan-2-yl)-5,9-epoxybenzo[1,2-a:3,4-a?]di[14]annulene-26a(4H)-carboxylate|sarcophytolide J

C41H60O7 (664.4338809999999)


   

2-(2,4-dihydroxy-6-tridecylphenyl)-3-[(8Z)-heptadec-8-en-1-yl]-5-methoxycyclohexa-2,5-diene-1,4-dione|belamcandaquinone M

2-(2,4-dihydroxy-6-tridecylphenyl)-3-[(8Z)-heptadec-8-en-1-yl]-5-methoxycyclohexa-2,5-diene-1,4-dione|belamcandaquinone M

C43H68O5 (664.5066478)


   
   
   
   
   

Prostaglandin F2α-biotin

9α,11α,15S-trihydroxy-prosta-5Z,13E-dien-1-oyl-N-biotinoyl-1,5-diaminopentane

C35H60N4O6S (664.4233340000001)


   

DG(20:4/20:4/0:0)

1,2-di-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycerol

C43H68O5 (664.5066478)


   

DG(20:3/20:5/0:0)[iso2]

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerol

C43H68O5 (664.5066478)


   

DG(18:3/22:5/0:0)[iso2]

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycerol

C43H68O5 (664.5066478)


   

DG(18:2/22:6/0:0)[iso2]

1-(9Z,12Z-octadecadienoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C43H68O5 (664.5066478)


   

Diglyceride

1-eicosapentaenoyl-2-homo-gamma-linolenoyl-sn-glycerol

C43H68O5 (664.5066478)


   

PG(12:0/16:1(9Z))

1-dodecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG(13:0/15:1(9Z))

1-tridecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG(14:0/14:1(9Z))

1-tetradecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG(14:1(9Z)/14:0)

1-(9Z-tetradecenoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG(15:1(9Z)/13:0)

1-(9Z-pentadecenoyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG(16:1(9Z)/12:0)

1-(9Z-hexadecenoyl)-2-dodecanoyl-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG(P-16:0/13:0)

1-(1Z-hexadecenyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C35H69O9P (664.4678954)


   

DG 40:8

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-sn-glycerol

C43H68O5 (664.5066478)


   

PG 28:1

1-(9Z-tetradecenoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C34H65O10P (664.431512)


   

PG O-29:1

1-(1Z-hexadecenyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C35H69O9P (664.4678954)


   

3-[[7alpha-Hydroxy-24-oxo-3beta-[[3-[(4-aminobutyl)amino]propyl]amino]-5alpha-cholestane-26-yl]thio]-2-aminopropanoic acid

3-[[7alpha-Hydroxy-24-oxo-3beta-[[3-[(4-aminobutyl)amino]propyl]amino]-5alpha-cholestane-26-yl]thio]-2-aminopropanoic acid

C37H68N4O4S (664.4961008)


   

Paliperidone Palmitate

Paliperidone Palmitate

C39H57FN4O4 (664.4363613999999)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Paliperidone palmitate (9-Hydroxyrisperidone palmitate), an atypical long-acting antipsychotic agent, is an ester proagent of Paliperidone. Paliperidone is a dopamine antagonist and 5-HT2A antagonist of the atypical antipsychotic class. Paliperidone palmitate shows efficacy against schizophrenia[1].

   

Diarachidonyl diglyceride

Diarachidonyl diglyceride

C43H68O5 (664.5066478)


   

DG(20:4(5Z,8Z,11Z,14Z)/0:0/20:4(5Z,8Z,11Z,14Z)) (d5)

DG(20:4(5Z,8Z,11Z,14Z)/0:0/20:4(5Z,8Z,11Z,14Z)) (d5)

C43H68O5 (664.5066478)


   

PA(13:0/18:1(12Z)-2OH(9,10))

PA(13:0/18:1(12Z)-2OH(9,10))

C34H65O10P (664.431512)


   

PA(18:1(12Z)-2OH(9,10)/13:0)

PA(18:1(12Z)-2OH(9,10)/13:0)

C34H65O10P (664.431512)


   

PA(a-13:0/18:1(12Z)-2OH(9,10))

PA(a-13:0/18:1(12Z)-2OH(9,10))

C34H65O10P (664.431512)


   

PA(18:1(12Z)-2OH(9,10)/a-13:0)

PA(18:1(12Z)-2OH(9,10)/a-13:0)

C34H65O10P (664.431512)


   

PA(i-13:0/18:1(12Z)-2OH(9,10))

PA(i-13:0/18:1(12Z)-2OH(9,10))

C34H65O10P (664.431512)


   

PA(18:1(12Z)-2OH(9,10)/i-13:0)

PA(18:1(12Z)-2OH(9,10)/i-13:0)

C34H65O10P (664.431512)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

DG(16:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0)

DG(16:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0)

C39H68O8 (664.4913928000001)


   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:0/0:0)

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/16:0/0:0)

C39H68O8 (664.4913928000001)


   

DG(16:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

DG(16:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C39H68O8 (664.4913928000001)


   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/16:0)

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/16:0)

C39H68O8 (664.4913928000001)


   

DG(i-16:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0)

DG(i-16:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0)

C39H68O8 (664.4913928000001)


   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-16:0/0:0)

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-16:0/0:0)

C39H68O8 (664.4913928000001)


   

DG(i-16:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

DG(i-16:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C39H68O8 (664.4913928000001)


   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/i-16:0)

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/i-16:0)

C39H68O8 (664.4913928000001)


   
   
   

2-[hydroxy-[(2R)-2-nonanoyloxy-3-octadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-nonanoyloxy-3-octadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[2-(Dodecanoylamino)-3,4-dihydroxyoctadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-(Dodecanoylamino)-3,4-dihydroxyoctadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H73N2O7P (664.5155118)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H65N2O6P (664.4580000000001)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] hexadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] hexadecanoate

C35H69O9P (664.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-hexadec-9-enoate

C35H69O9P (664.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] dodecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] dodecanoate

C35H69O9P (664.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-octadec-9-enoate

C35H69O9P (664.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] decanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] decanoate

C35H69O9P (664.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (Z)-heptadec-9-enoate

C35H69O9P (664.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] tridecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] tridecanoate

C35H69O9P (664.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-tridec-9-enoate

C35H69O9P (664.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] tetradecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] tetradecanoate

C35H69O9P (664.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-pentadec-9-enoate

C35H69O9P (664.4678954)


   

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C35H69O9P (664.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] undecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] undecanoate

C35H69O9P (664.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] pentadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] pentadecanoate

C35H69O9P (664.4678954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-tetradec-9-enoate

C35H69O9P (664.4678954)


   

[(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]dodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]dodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H65N2O6P (664.4580000000001)


   

[(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H65N2O6P (664.4580000000001)


   

[(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H65N2O6P (664.4580000000001)


   

[(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H65N2O6P (664.4580000000001)


   

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H65N2O6P (664.4580000000001)


   

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H65N2O6P (664.4580000000001)


   

[(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]tetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]tetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H65N2O6P (664.4580000000001)


   

[2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydecyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H65N2O6P (664.4580000000001)


   

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H65N2O6P (664.4580000000001)


   

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C43H68O5 (664.5066478)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C43H68O5 (664.5066478)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C43H68O5 (664.5066478)


   

(1-decanoyloxy-3-hydroxypropan-2-yl) (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

(1-decanoyloxy-3-hydroxypropan-2-yl) (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

C43H68O5 (664.5066478)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-octanoyloxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-octanoyloxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C43H68O5 (664.5066478)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octoxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octoxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C43H68O5 (664.5066478)


   

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]octyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]octyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H65N2O6P (664.4580000000001)


   

[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate

C34H65O10P (664.431512)


   

[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-docos-13-enoate

[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-docos-13-enoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C34H65O10P (664.431512)


   

[1-[(2-acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[(2-acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexacos-15-enoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

C34H65O10P (664.431512)


   

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-henicos-11-enoate

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-henicos-11-enoate

C34H65O10P (664.431512)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexadec-9-enoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] tetradecanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] tetradecanoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C34H65O10P (664.431512)


   

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-octadec-9-enoate

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-octadec-9-enoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] pentadecanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] pentadecanoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C34H65O10P (664.431512)


   

Isodiotigenin-tri-trimethylsilyl ether

Isodiotigenin-tri-trimethylsilyl ether

C36H68O5Si3 (664.4374318)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-henicos-11-enoate

C34H65O10P (664.431512)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-icos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-icos-11-enoate

C34H65O10P (664.431512)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

C34H65O10P (664.431512)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (Z)-docos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (Z)-docos-13-enoate

C34H65O10P (664.431512)


   

[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

C34H65O10P (664.431512)


   

[1-acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate

[1-acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C43H68O5 (664.5066478)


   

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C34H65O10P (664.431512)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] pentadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] pentadecanoate

C34H65O10P (664.431512)


   

[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C43H68O5 (664.5066478)


   

[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C43H68O5 (664.5066478)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-pentadec-9-enoate

C34H65O10P (664.431512)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

C34H65O10P (664.431512)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] tetradecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] tetradecanoate

C34H65O10P (664.431512)


   

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C43H68O5 (664.5066478)


   

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C43H68O5 (664.5066478)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate

C34H65O10P (664.431512)


   

[3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C43H68O5 (664.5066478)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C43H68O5 (664.5066478)


   

2-[[(2R)-3-dodecanoyloxy-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-dodecanoyloxy-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

2-[hydroxy-[(2R)-2-tetradecanoyloxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-tetradecanoyloxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

2-[hydroxy-[(2R)-3-tetradecanoyloxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-tetradecanoyloxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

2-[[(2R)-2-dodecanoyloxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-dodecanoyloxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

[O-(1-O-Undecanoyl-2-O-hexadecanoyl-L-glycero-3-phospho)choline]anion

[O-(1-O-Undecanoyl-2-O-hexadecanoyl-L-glycero-3-phospho)choline]anion

C35H71NO8P+ (664.4917036)


   

2-[[(2S)-3-hexadecanoyloxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-3-hexadecanoyloxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (9Z,12Z)-pentadeca-9,12-dienoate

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (9Z,12Z)-pentadeca-9,12-dienoate

C42H64O6 (664.4702643999999)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

C42H64O6 (664.4702643999999)


   

(1-hydroxy-3-octanoyloxypropan-2-yl) (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoate

(1-hydroxy-3-octanoyloxypropan-2-yl) (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoate

C43H68O5 (664.5066478)


   

2-[(3-Decanoyloxy-2-heptadecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Decanoyloxy-2-heptadecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

2-[(2-Hexadecanoyloxy-3-undecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Hexadecanoyloxy-3-undecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

2-[(3-Dodecanoyloxy-2-pentadecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Dodecanoyloxy-2-pentadecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

2-[Hydroxy-(2-tetradecanoyloxy-3-tridecanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(2-tetradecanoyloxy-3-tridecanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

2-[Hydroxy-(2-nonadecanoyloxy-3-octanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(2-nonadecanoyloxy-3-octanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

2-[Hydroxy-(3-nonanoyloxy-2-octadecanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(3-nonanoyloxy-2-octadecanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

[1-carboxy-3-[2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-tetradecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-tetradecanoyloxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-13-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-13-enoate

C34H65O10P (664.431512)


   

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

C43H68O5 (664.5066478)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-hexadec-7-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-hexadec-7-enoate

C34H65O10P (664.431512)


   

[(2S)-3-hydroxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-hydroxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C43H68O5 (664.5066478)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-heptadec-9-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-heptadec-9-enoate

C34H65O10P (664.431512)


   

[1-carboxy-3-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C43H68O5 (664.5066478)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] octadec-17-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] octadec-17-enoate

C34H65O10P (664.431512)


   

[(2S)-1-hydroxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-hydroxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C43H68O5 (664.5066478)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-9-enoate

C34H65O10P (664.431512)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-11-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-11-enoate

C34H65O10P (664.431512)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (15E,18E,21E)-tetracosa-15,18,21-trienoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (15E,18E,21E)-tetracosa-15,18,21-trienoate

C43H68O5 (664.5066478)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-6-enoate

C34H65O10P (664.431512)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] octadec-17-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] octadec-17-enoate

C34H65O10P (664.431512)


   

[(2S)-3-hydroxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-hydroxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C43H68O5 (664.5066478)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-hexadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-hexadec-9-enoate

C34H65O10P (664.431512)


   

[1-carboxy-3-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoate

C43H68O5 (664.5066478)


   

2-[[(2S)-2-decanoyloxy-3-heptadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-decanoyloxy-3-heptadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

[1-carboxy-3-[2-pentadecanoyloxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-pentadecanoyloxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-4-enoate

C34H65O10P (664.431512)


   

[1-carboxy-3-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(E)-nonadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(E)-nonadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(E)-nonadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(E)-nonadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[2-dodecanoyloxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-dodecanoyloxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[3-pentadecanoyloxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-pentadecanoyloxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-heptadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-heptadecanoyloxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H68O5 (664.5066478)


   

[1-carboxy-3-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C43H68O5 (664.5066478)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-hexadec-7-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-hexadec-7-enoate

C34H65O10P (664.431512)


   

[1-carboxy-3-[2-[(E)-pentadec-9-enoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-pentadec-9-enoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[3-decanoyloxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-decanoyloxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[3-[(E)-pentadec-9-enoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-pentadec-9-enoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] tetradecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] tetradecanoate

C34H65O10P (664.431512)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-7-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-7-enoate

C34H65O10P (664.431512)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-pentadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-pentadec-9-enoate

C34H65O10P (664.431512)


   

[1-carboxy-3-[3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-2-tetradecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-2-tetradecanoyloxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-pentadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-pentadec-9-enoate

C34H65O10P (664.431512)


   

[1-carboxy-3-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-7-enoate

C34H65O10P (664.431512)


   

[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-11-enoate

C34H65O10P (664.431512)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (E)-octadec-13-enoate

C34H65O10P (664.431512)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

C34H65O10P (664.431512)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] tetradecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] tetradecanoate

C34H65O10P (664.431512)


   

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate

C43H68O5 (664.5066478)


   

2-[[(2R)-3-decanoyloxy-2-heptadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-heptadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[(2S)-1-hydroxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-hydroxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C43H68O5 (664.5066478)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-hexadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-hexadec-9-enoate

C34H65O10P (664.431512)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-6-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-6-enoate

C34H65O10P (664.431512)


   

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C43H68O5 (664.5066478)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-4-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-4-enoate

C34H65O10P (664.431512)


   

[1-carboxy-3-[2-decanoyloxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-decanoyloxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-9-enoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (E)-octadec-9-enoate

C34H65O10P (664.431512)


   

[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[3-dodecanoyloxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-dodecanoyloxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-heptadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-heptadecanoyloxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C43H68O5 (664.5066478)


   

2-[(3-Butanoyloxy-2-tricosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Butanoyloxy-2-tricosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

[1-carboxy-3-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

2-[(3-Heptanoyloxy-2-icosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Heptanoyloxy-2-icosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

[1-carboxy-3-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-nonanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-nonanoyloxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

2-[(2-Docosanoyloxy-3-pentanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Docosanoyloxy-3-pentanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

2-[Hydroxy-(3-propanoyloxy-2-tetracosanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(3-propanoyloxy-2-tetracosanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

2-[(2-Henicosanoyloxy-3-hexanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Henicosanoyloxy-3-hexanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

2-[(3-Acetyloxy-2-pentacosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Acetyloxy-2-pentacosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H71NO8P+ (664.4917036)


   

[1-carboxy-3-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

[1-carboxy-3-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-heptanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-heptanoyloxypropoxy]propyl]-trimethylazanium

C39H70NO7+ (664.5152009999999)


   

2-[carboxy-[3-decanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-decanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C38H66NO8+ (664.4788176000001)


   

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H63NO7P+ (664.4341918)


   

2-[carboxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C38H66NO8+ (664.4788176000001)


   

2-[carboxy-[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C38H66NO8+ (664.4788176000001)


   

1,2-diarachidonoyl-sn-glycerol

1,2-diarachidonoyl-sn-glycerol

C43H68O5 (664.5066478)


A 1,2-diacyl-sn-glycerol in which both the acyl groups are specified as arachidonoyl.

   

DG(20:4(5Z,8Z,11Z,14Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

DG(20:4(5Z,8Z,11Z,14Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

C43H68O5 (664.5066478)


   

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycerol

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycerol

C43H68O5 (664.5066478)


   

diacylglycerol 40:8

diacylglycerol 40:8

C43H68O5 (664.5066478)


A diglyceride in which the acyl groups contain a total of 40 carbons and 8 double bonds.

   

1,2-di-[(5Z,8Z,11Z,14Z)-eicosatetraenoyl]-sn-glycerol

1,2-di-[(5Z,8Z,11Z,14Z)-eicosatetraenoyl]-sn-glycerol

C43H68O5 (664.5066478)


A diacylglycerol 40:8 in which both the acyl groups specified at positions 1 and 2 is (5Z,8Z,11Z,14Z)-eicosatetraenoyl.

   

TG(40:8)

TG(20:1(1)_10:3_10:4)

C43H68O5 (664.5066478)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

TG(39:8)

TG(18:4_10:2_11:2)

C42H64O6 (664.4702643999999)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

FAHFA 21:7/O-24:7

FAHFA 21:7/O-24:7

C45H60O4 (664.449136)


   

FAHFA 22:7/O-23:7

FAHFA 22:7/O-23:7

C45H60O4 (664.449136)


   

FAHFA 23:7/O-22:7

FAHFA 23:7/O-22:7

C45H60O4 (664.449136)


   

FAHFA 24:7/O-21:7

FAHFA 24:7/O-21:7

C45H60O4 (664.449136)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PG P-14:0/15:0 or PG O-14:1/15:0

PG P-14:0/15:0 or PG O-14:1/15:0

C35H69O9P (664.4678954)


   
   

PG P-16:0/13:0 or PG O-16:1/13:0

PG P-16:0/13:0 or PG O-16:1/13:0

C35H69O9P (664.4678954)


   
   

PG P-18:0/11:0 or PG O-18:1/11:0

PG P-18:0/11:0 or PG O-18:1/11:0

C35H69O9P (664.4678954)


   
   
   

PG P-29:0 or PG O-29:1

PG P-29:0 or PG O-29:1

C35H69O9P (664.4678954)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

methyl 3-[(3s,3ar,4r,5ar,6s,7s,9ar,9br)-3-[(2s)-2-hydroxy-6-methyl-5-methylideneheptan-2-yl]-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-decahydrocyclopenta[a]naphthalen-6-yl]propanoate

methyl 3-[(3s,3ar,4r,5ar,6s,7s,9ar,9br)-3-[(2s)-2-hydroxy-6-methyl-5-methylideneheptan-2-yl]-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-decahydrocyclopenta[a]naphthalen-6-yl]propanoate

C38H64O9 (664.4550094)


   

(1r)-1-hydroxy-1-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-8-oxopentadecan-3-yl acetate

(1r)-1-hydroxy-1-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-8-oxopentadecan-3-yl acetate

C39H68O8 (664.4913928000001)


   

(1r,3as,5ar,7s,9as,11ar)-1-[(2r,5s)-5-hydroxy-5,6,6-trimethylheptan-2-yl]-6,6,9a,11a-tetramethyl-7-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

(1r,3as,5ar,7s,9as,11ar)-1-[(2r,5s)-5-hydroxy-5,6,6-trimethylheptan-2-yl]-6,6,9a,11a-tetramethyl-7-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

C38H64O9 (664.4550094)


   

1-hydroxy-1-[5-(1-hydroxytridecyl)oxolan-2-yl]-15-(5-methyl-2-oxo-5h-furan-3-yl)-8-oxopentadecan-3-yl acetate

1-hydroxy-1-[5-(1-hydroxytridecyl)oxolan-2-yl]-15-(5-methyl-2-oxo-5h-furan-3-yl)-8-oxopentadecan-3-yl acetate

C39H68O8 (664.4913928000001)


   

(3as,5ar,7s,9as,11ar)-1-[(2r)-5-hydroxy-5,6,6-trimethylheptan-2-yl]-6,6,9a,11a-tetramethyl-7-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

(3as,5ar,7s,9as,11ar)-1-[(2r)-5-hydroxy-5,6,6-trimethylheptan-2-yl]-6,6,9a,11a-tetramethyl-7-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

C38H64O9 (664.4550094)


   

(1r,3s)-1-hydroxy-1-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-8-oxopentadecan-3-yl acetate

(1r,3s)-1-hydroxy-1-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-8-oxopentadecan-3-yl acetate

C39H68O8 (664.4913928000001)


   

3-hydroxy-1-[5-(1-hydroxytridecyl)oxolan-2-yl]-15-(5-methyl-2-oxo-5h-furan-3-yl)-13-oxopentadecyl acetate

3-hydroxy-1-[5-(1-hydroxytridecyl)oxolan-2-yl]-15-(5-methyl-2-oxo-5h-furan-3-yl)-13-oxopentadecyl acetate

C39H68O8 (664.4913928000001)


   

1-(5-hydroxy-5,6,6-trimethylheptan-2-yl)-6,6,9a,11a-tetramethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

1-(5-hydroxy-5,6,6-trimethylheptan-2-yl)-6,6,9a,11a-tetramethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

C38H64O9 (664.4550094)


   

3-{[(6r)-6-[(1r,3as,3br,4r,5ar,7s,9as,9bs,11ar)-7-({3-[(4-aminobutyl)amino]propyl}amino)-4-hydroxy-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2-methyl-3-oxoheptyl]sulfanyl}-2-aminopropanoic acid

3-{[(6r)-6-[(1r,3as,3br,4r,5ar,7s,9as,9bs,11ar)-7-({3-[(4-aminobutyl)amino]propyl}amino)-4-hydroxy-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2-methyl-3-oxoheptyl]sulfanyl}-2-aminopropanoic acid

C37H68N4O4S (664.4961008)


   

2-(2,4-dihydroxy-6-tridecylphenyl)-3-(heptadec-8-en-1-yl)-5-methoxycyclohexa-2,5-diene-1,4-dione

2-(2,4-dihydroxy-6-tridecylphenyl)-3-(heptadec-8-en-1-yl)-5-methoxycyclohexa-2,5-diene-1,4-dione

C43H68O5 (664.5066478)


   

(2s,4s,6s,8s,10z,12r,14r,16e,18s,19s)-11,19-dihydroxy-20-{5'-[(1r)-1-hydroxyethyl]-2,5'-dimethyl-[2,2'-bioxolan]-5-yl}-2,4,6,8,12,14,18-heptamethyl-9-oxoicosa-10,16-dienoic acid

(2s,4s,6s,8s,10z,12r,14r,16e,18s,19s)-11,19-dihydroxy-20-{5'-[(1r)-1-hydroxyethyl]-2,5'-dimethyl-[2,2'-bioxolan]-5-yl}-2,4,6,8,12,14,18-heptamethyl-9-oxoicosa-10,16-dienoic acid

C39H68O8 (664.4913928000001)


   

(1r,3s)-3-hydroxy-1-[(2r,5r)-5-[(1s)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-13-oxopentadecyl acetate

(1r,3s)-3-hydroxy-1-[(2r,5r)-5-[(1s)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-13-oxopentadecyl acetate

C39H68O8 (664.4913928000001)


   

(2r)-3-{[(2s,6r)-6-[(1r,3as,3br,4r,5ar,7s,9as,9bs,11ar)-7-({3-[(4-aminobutyl)amino]propyl}amino)-4-hydroxy-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2-methyl-3-oxoheptyl]sulfanyl}-2-aminopropanoic acid

(2r)-3-{[(2s,6r)-6-[(1r,3as,3br,4r,5ar,7s,9as,9bs,11ar)-7-({3-[(4-aminobutyl)amino]propyl}amino)-4-hydroxy-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2-methyl-3-oxoheptyl]sulfanyl}-2-aminopropanoic acid

C37H68N4O4S (664.4961008)


   

(4e,8z,14z,23e,27z,42e)-20,44-dihydroxyhexatetraconta-4,8,14,23,27,42-hexaen-1,18,21,45-tetrayn-3-one

(4e,8z,14z,23e,27z,42e)-20,44-dihydroxyhexatetraconta-4,8,14,23,27,42-hexaen-1,18,21,45-tetrayn-3-one

C46H64O3 (664.4855193999999)


   

4,5-dihydroxy-2-{[10-hydroxy-1-(2-hydroxy-6-methylhept-5-en-2-yl)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl acetate

4,5-dihydroxy-2-{[10-hydroxy-1-(2-hydroxy-6-methylhept-5-en-2-yl)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl acetate

C38H64O9 (664.4550094)


   

11,19-dihydroxy-20-[5'-(1-hydroxyethyl)-2,5'-dimethyl-[2,2'-bioxolan]-5-yl]-2,4,6,8,12,14,18-heptamethyl-9-oxoicosa-10,16-dienoic acid

11,19-dihydroxy-20-[5'-(1-hydroxyethyl)-2,5'-dimethyl-[2,2'-bioxolan]-5-yl]-2,4,6,8,12,14,18-heptamethyl-9-oxoicosa-10,16-dienoic acid

C39H68O8 (664.4913928000001)


   

(2s,4s,6s,8s,12r,14r,18s,19s)-11,19-dihydroxy-20-{5'-[(1r)-1-hydroxyethyl]-2,5'-dimethyl-[2,2'-bioxolan]-5-yl}-2,4,6,8,12,14,18-heptamethyl-9-oxoicosa-10,16-dienoic acid

(2s,4s,6s,8s,12r,14r,18s,19s)-11,19-dihydroxy-20-{5'-[(1r)-1-hydroxyethyl]-2,5'-dimethyl-[2,2'-bioxolan]-5-yl}-2,4,6,8,12,14,18-heptamethyl-9-oxoicosa-10,16-dienoic acid

C39H68O8 (664.4913928000001)


   

2-(2,4-dihydroxy-6-tridecylphenyl)-3-[(8z)-heptadec-8-en-1-yl]-5-methoxycyclohexa-2,5-diene-1,4-dione

2-(2,4-dihydroxy-6-tridecylphenyl)-3-[(8z)-heptadec-8-en-1-yl]-5-methoxycyclohexa-2,5-diene-1,4-dione

C43H68O5 (664.5066478)


   

(1r,3as,5ar,7s,9as,11ar)-1-[(2r,5r)-5-hydroxy-5,6,6-trimethylheptan-2-yl]-6,6,9a,11a-tetramethyl-7-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

(1r,3as,5ar,7s,9as,11ar)-1-[(2r,5r)-5-hydroxy-5,6,6-trimethylheptan-2-yl]-6,6,9a,11a-tetramethyl-7-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

C38H64O9 (664.4550094)


   

methyl 3-[3-(2-hydroxy-6-methyl-5-methylideneheptan-2-yl)-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-decahydrocyclopenta[a]naphthalen-6-yl]propanoate

methyl 3-[3-(2-hydroxy-6-methyl-5-methylideneheptan-2-yl)-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-decahydrocyclopenta[a]naphthalen-6-yl]propanoate

C38H64O9 (664.4550094)


   

7-{5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl}-2,3,4-trihydroxyoctyl 2-phenylacetate

7-{5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl}-2,3,4-trihydroxyoctyl 2-phenylacetate

C43H68O5 (664.5066478)


   

(2s,3r,4r,5r,6s)-2-{[(4e,6z,8z,10e,12e,14e,16z,18z,20e)-2-hydroxy-21-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,6,10,15,19-pentamethylhenicosa-4,6,8,10,12,14,16,18,20-nonaen-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(4e,6z,8z,10e,12e,14e,16z,18z,20e)-2-hydroxy-21-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,6,10,15,19-pentamethylhenicosa-4,6,8,10,12,14,16,18,20-nonaen-3-yl]oxy}-6-methyloxane-3,4,5-triol

C41H60O7 (664.4338809999999)


   

20,44-dihydroxyhexatetraconta-4,8,14,23,27,42-hexaen-1,18,21,45-tetrayn-3-one

20,44-dihydroxyhexatetraconta-4,8,14,23,27,42-hexaen-1,18,21,45-tetrayn-3-one

C46H64O3 (664.4855193999999)


   

(4e,8z,14z,20r,23e,27z,42e,44s)-20,44-dihydroxyhexatetraconta-4,8,14,23,27,42-hexaen-1,18,21,45-tetrayn-3-one

(4e,8z,14z,20r,23e,27z,42e,44s)-20,44-dihydroxyhexatetraconta-4,8,14,23,27,42-hexaen-1,18,21,45-tetrayn-3-one

C46H64O3 (664.4855193999999)


   

2-amino-3-({6-[7-({3-[(4-aminobutyl)amino]propyl}amino)-4-hydroxy-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2-methyl-3-oxoheptyl}sulfanyl)propanoic acid

2-amino-3-({6-[7-({3-[(4-aminobutyl)amino]propyl}amino)-4-hydroxy-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2-methyl-3-oxoheptyl}sulfanyl)propanoic acid

C37H68N4O4S (664.4961008)


   

(1r,3r)-3-hydroxy-1-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-13-oxopentadecyl acetate

(1r,3r)-3-hydroxy-1-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-15-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-13-oxopentadecyl acetate

C39H68O8 (664.4913928000001)


   

(2s,3r,4r,7r)-7-[(3r,3as,5ar,5br,7as,11as,11br,13ar,13bs)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]-2,3,4-trihydroxyoctyl 2-phenylacetate

(2s,3r,4r,7r)-7-[(3r,3as,5ar,5br,7as,11as,11br,13ar,13bs)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]-2,3,4-trihydroxyoctyl 2-phenylacetate

C43H68O5 (664.5066478)


   

(6r)-6-[(3s,5s,10r,11s,13as,13br)-5-hydroxy-11,13b-dimethyl-3-[(5e)-octa-5,7-dienoyloxy]-1h,2h,3h,4h,4ah,5h,7h,8h,9h,10h,11h,12h,13h,13ah-cyclonona[a]naphthalen-10-yl]-2-methylheptyl (5e)-octa-5,7-dienoate

(6r)-6-[(3s,5s,10r,11s,13as,13br)-5-hydroxy-11,13b-dimethyl-3-[(5e)-octa-5,7-dienoyloxy]-1h,2h,3h,4h,4ah,5h,7h,8h,9h,10h,11h,12h,13h,13ah-cyclonona[a]naphthalen-10-yl]-2-methylheptyl (5e)-octa-5,7-dienoate

C43H68O5 (664.5066478)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7s,9as,9br,10r,11ar)-10-hydroxy-1-[(2s)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7s,9as,9br,10r,11ar)-10-hydroxy-1-[(2s)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C38H64O9 (664.4550094)