Exact Mass: 661.4189604000001

Exact Mass Matches: 661.4189604000001

Found 279 metabolites which its exact mass value is equals to given mass value 661.4189604000001, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

   

Mucronine D

(Z)-N-{1-[(8Z,11E,13E)-10-(butan-2-yl)-8,11-dihydroxy-16-methoxy-2-oxa-6,9,12-triazatricyclo[13.3.1.0³,⁷]nonadeca-1(18),8,11,13,15(19),16-hexaen-6-yl]-4-methyl-1-oxopentan-2-yl}-2-(dimethylamino)-3-phenylpropimidic acid

C37H51N5O6 (661.3839146)


Mucronine D is found in fruits. Mucronine D is an alkaloid from the stem bark of Zizyphus jujuba (Chinese date) and Zizyphus jujuba var. inermi Alkaloid from the stem bark of Zizyphus jujuba (Chinese date) and Zizyphus jujuba variety inermis. Mucronine D is found in fruits.

   

PE(14:0/16:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-(tetradecanoyloxy)propoxy]phosphinic acid

C35H68NO8P (661.4682298)


PE(14:0/16:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:0/16:1(9Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(14:0/16:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(14:0/16:1(9Z)), in particular, consists of one tetradecanoyl chain to the C-1 atom, and one 9Z-hexadecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(14:1(9Z)/16:0)

(2-aminoethoxy)[(2R)-2-(hexadecanoyloxy)-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C35H68NO8P (661.4682298)


PE(14:1(9Z)/16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:1(9Z)/16:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(14:1(9Z)/16:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(14:1(9Z)/16:0), in particular, consists of one 9Z-tetradecenoyl chain to the C-1 atom, and one hexadecanoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(16:0/14:1(9Z))

(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C35H68NO8P (661.4682298)


PE(16:0/14:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/14:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:0/14:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(16:0/14:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-tetradecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(16:1(9Z)/14:0)

(2-aminoethoxy)[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-(tetradecanoyloxy)propoxy]phosphinic acid

C35H68NO8P (661.4682298)


PE(16:1(9Z)/14:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:1(9Z)/14:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of myristic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:1(9Z)/14:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(16:1(9Z)/14:0), in particular, consists of one 9Z-hexadecenoyl chain to the C-1 atom, and one tetradecanoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE-NMe(14:1(9Z)/15:0)

[2-(methylamino)ethoxy][2-(pentadecanoyloxy)-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C35H68NO8P (661.4682298)


PE-NMe(14:1(9Z)/15:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:1(9Z)/15:0), in particular, consists of one 9Z-tetradecenoyl chain to the C-1 atom, and one pentadecanoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(15:0/14:1(9Z))

[2-(methylamino)ethoxy][3-(pentadecanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C35H68NO8P (661.4682298)


PE-NMe(15:0/14:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(15:0/14:1(9Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(14:0/14:1(9Z))

[2-(dimethylamino)ethoxy]({2-[(9Z)-tetradec-9-enoyloxy]-3-(tetradecanoyloxy)propoxy})phosphinic acid

C35H68NO8P (661.4682298)


PE-NMe2(14:0/14:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions.PE-NMe2(14:0/14:1(9Z)), in particular, consists of one tetradecanoyl chain to the C-1 atom, and one 9Z-tetradecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe2(14:1(9Z)/14:0)

[2-(dimethylamino)ethoxy]({3-[(9Z)-tetradec-9-enoyloxy]-2-(tetradecanoyloxy)propoxy})phosphinic acid

C35H68NO8P (661.4682298)


PE-NMe2(14:1(9Z)/14:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(14:1(9Z)/14:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

Phenylalanyl-leucyl-leucyl-arginyl-asparagine

2-[(2-{[2-({2-[(2-amino-1-hydroxy-3-phenylpropylidene)amino]-1-hydroxy-4-methylpentylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-5-carbamimidamido-1-hydroxypentylidene)amino]-3-(C-hydroxycarbonimidoyl)propanoate

C31H51N9O7 (661.3911255999999)


   
   
   
   
   
   

2-carboxy-2-amino-3-O-(13-methyltetradecanoyl)-4-hydroxy-17-methyloctadec-5-ene-1-sulfonic acid

2-carboxy-2-amino-3-O-(13-methyltetradecanoyl)-4-hydroxy-17-methyloctadec-5-ene-1-sulfonic acid

C35H67NO8S (661.4587142)


   

PE(30:1)

1-Palmitoleoyl-2-myristoyl-sn-glycero-3-phosphoethanolamine

C35H68NO8P (661.4682298)


   

PC(12:0/15:1(9Z))

1-dodecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C35H68NO8P (661.4682298)


   

PC(13:0/14:1(9Z))

1-tridecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine

C35H68NO8P (661.4682298)


   

PC(14:1(9Z)/13:0)

1-(9Z-tetradecenoyl)-2-tridecanoyl-glycero-3-phosphocholine

C35H68NO8P (661.4682298)


   

PC(15:1(9Z)/12:0)

1-(9Z-pentadecenoyl)-2-dodecanoyl-glycero-3-phosphocholine

C35H68NO8P (661.4682298)


   

PE(13:0/17:1(9Z))

1-tridecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

C35H68NO8P (661.4682298)


   

PE(15:0/15:1(9Z))

1-pentadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

C35H68NO8P (661.4682298)


   

PE(15:1(9Z)/15:0)

1-(9Z-pentadecenoyl)-2-pentadecanoyl-glycero-3-phosphoethanolamine

C35H68NO8P (661.4682298)


   

PE(17:1(9Z)/13:0)

1-(9Z-heptadecenoyl)-2-tridecanoyl-glycero-3-phosphoethanolamine

C35H68NO8P (661.4682298)


   

PE(18:1(9Z)/12:0)

1-(9Z-octadecenoyl)-2-dodecanoyl-glycero-3-phosphoethanolamine

C35H68NO8P (661.4682298)


   

PE(12:0/18:1(9Z))

1-dodecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphoethanolamine

C35H68NO8P (661.4682298)


   

PC 27:1

1-(9Z-tetradecenoyl)-2-tridecanoyl-glycero-3-phosphocholine

C35H68NO8P (661.4682298)


   

PE 30:1

1-(9Z-pentadecenoyl)-2-pentadecanoyl-glycero-3-phosphoethanolamine

C35H68NO8P (661.4682298)


   

OHOHA-PC

1-(9Z-octadecenoyl)-2-(4-hydroxy-7-oxo-5E-heptenoyl)-sn-glycero-3-phosphocholine

C33H60NO10P (661.395463)


   

PKODA-PE

1-hexadecanoyl-2-(9,12-dioxo-10E-dodecenoyl)-sn-glycero-3-phosphoethanolamine

C33H60NO10P (661.395463)


   

TRAP-6 (2-6) trifluoroacetate salt

TRAP-6 (2-6) trifluoroacetate salt

C31H51N9O7 (661.3911255999999)


   

3,8-Diamino-6-phenyl-5-[6-[1-[2-[(1,2,3,4-tetrahydro-9-acridinyl)amino]ethyl]-1H-1,2,3-triazol-5-YL]hexyl]-phenanthridinium

3,8-Diamino-6-phenyl-5-[6-[1-[2-[(1,2,3,4-tetrahydro-9-acridinyl)amino]ethyl]-1H-1,2,3-triazol-5-YL]hexyl]-phenanthridinium

C42H45N8+ (661.376699)


   

3,8-Diamino-6-phenyl-5-[6-[1-[2-[(1,2,3,4-tetrahydro-9-acridinyl)amino]ethyl]-1H-1,2,3-triazol-4-YL]hexyl]-phenanthridinium

3,8-Diamino-6-phenyl-5-[6-[1-[2-[(1,2,3,4-tetrahydro-9-acridinyl)amino]ethyl]-1H-1,2,3-triazol-4-YL]hexyl]-phenanthridinium

C42H45N8+ (661.376699)


   

Phosphatidylethanolamine (1-myristoyl, 2-palmitoleoyl)

Phosphatidylethanolamine (1-myristoyl, 2-palmitoleoyl)

C35H68NO8P (661.4682298)


   

Dragomabin

Dragomabin

C37H51N5O6 (661.3839146)


A lipopeptide consisting of a 2-methyloct-7-ynoyl moiety attached to a linear tetrapeptide comprising of N-methyl-L-phenylalanyl, L-alanyl, N-methyl-L-alanyl and Nalpha,O-dimethyl-L-tyrosine units. It is isolated from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula and displays antimalarial activity.

   

2-azaniumylethyl [(2R)-3-[(Z)-hexadec-9-enoyl]oxy-2-tetradecanoyloxypropyl] phosphate

2-azaniumylethyl [(2R)-3-[(Z)-hexadec-9-enoyl]oxy-2-tetradecanoyloxypropyl] phosphate

C35H68NO8P (661.4682298)


   
   
   

HexCer 16:3;2O/16:3

HexCer 16:3;2O/16:3

C38H63NO8 (661.4553438)


   

HexCer 16:2;2O/16:4

HexCer 16:2;2O/16:4

C38H63NO8 (661.4553438)


   

HexCer 10:1;2O/22:5

HexCer 10:1;2O/22:5

C38H63NO8 (661.4553438)


   

HexCer 14:2;2O/18:4

HexCer 14:2;2O/18:4

C38H63NO8 (661.4553438)


   

HexCer 12:1;2O/20:5

HexCer 12:1;2O/20:5

C38H63NO8 (661.4553438)


   

HexCer 10:0;2O/22:6

HexCer 10:0;2O/22:6

C38H63NO8 (661.4553438)


   

HexCer 14:3;2O/18:3

HexCer 14:3;2O/18:3

C38H63NO8 (661.4553438)


   

HexCer 14:1;2O/18:5

HexCer 14:1;2O/18:5

C38H63NO8 (661.4553438)


   

HexCer 12:2;2O/20:4

HexCer 12:2;2O/20:4

C38H63NO8 (661.4553438)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoate

C37H60NO7P (661.4107179999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-octanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-octanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C38H63NO8 (661.4553438)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-[3-decanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-decanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C38H63NO8 (661.4553438)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C37H60NO7P (661.4107179999999)


   

2-amino-3-[[2-decanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-decanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C34H64NO9P (661.4318464)


   

2-amino-3-[hydroxy-[3-[(Z)-tetradec-9-enoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(Z)-tetradec-9-enoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C34H64NO9P (661.4318464)


   

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C34H64NO9P (661.4318464)


   

2-amino-3-[[3-decoxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-decoxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C34H64NO9P (661.4318464)


   

2-amino-3-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

C34H64NO9P (661.4318464)


   

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-undecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-undecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C34H64NO9P (661.4318464)


   

2-amino-3-[hydroxy-[3-[(Z)-pentadec-9-enoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(Z)-pentadec-9-enoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C34H64NO9P (661.4318464)


   

2-amino-3-[[2-dodecanoyloxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-dodecanoyloxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C34H64NO9P (661.4318464)


   

2-amino-3-[[3-dodecoxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-dodecoxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C34H64NO9P (661.4318464)


   

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C33H60NO10P (661.395463)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxypropanoic acid

C33H60NO10P (661.395463)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-henicos-11-enoate

C35H68NO8P (661.4682298)


   

2-amino-3-[hydroxy-[3-nonanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-nonanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C33H60NO10P (661.395463)


   

2-amino-3-[[3-heptanoyloxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptanoyloxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C33H60NO10P (661.395463)


   

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C33H60NO10P (661.395463)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate

C35H68NO8P (661.4682298)


   

2-amino-3-[hydroxy-[2-[(Z)-tetradec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-tetradec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C33H60NO10P (661.395463)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] heptadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] heptadecanoate

C35H68NO8P (661.4682298)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

C35H68NO8P (661.4682298)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

C35H68NO8P (661.4682298)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (Z)-icos-11-enoate

C35H68NO8P (661.4682298)


   

2-amino-3-[[3-decanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-decanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C33H60NO10P (661.395463)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] hexadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] hexadecanoate

C35H68NO8P (661.4682298)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

C35H68NO8P (661.4682298)


   

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C33H60NO10P (661.395463)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] pentadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] pentadecanoate

C35H68NO8P (661.4682298)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-9-enoate

C35H68NO8P (661.4682298)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] hexadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] hexadecanoate

C35H68NO8P (661.4682298)


   

[3-nonanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-nonanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[3-propanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-propanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[2-[(Z)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexadec-9-enoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

C35H68NO8P (661.4682298)


   

[2-[(Z)-docos-13-enoyl]oxy-3-pentanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-docos-13-enoyl]oxy-3-pentanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

2-amino-3-[hydroxy-[3-propanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-propanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C33H60NO10P (661.395463)


   

[2-[(Z)-henicos-11-enoyl]oxy-3-hexanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-henicos-11-enoyl]oxy-3-hexanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-butanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-butanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

C35H68NO8P (661.4682298)


   

[3-tetradecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-tetradecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[2-[(Z)-nonadec-9-enoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-nonadec-9-enoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[3-decanoyloxy-2-[(Z)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(Z)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[3-dodecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-docos-13-enoate

C35H68NO8P (661.4682298)


   

[3-heptanoyloxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptanoyloxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C36H56NO8P (661.3743346)


   

[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C36H56NO8P (661.3743346)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-hexadec-9-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-hexadec-9-enoate

C35H68NO8P (661.4682298)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-hexadec-9-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-hexadec-9-enoate

C35H68NO8P (661.4682298)


   

[(2S)-2-decanoyloxy-3-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-decanoyloxy-3-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-11-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-11-enoate

C35H68NO8P (661.4682298)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-11-enoate

C35H68NO8P (661.4682298)


   

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

(2S)-2-amino-3-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C33H60NO10P (661.395463)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

C35H68NO8P (661.4682298)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-7-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-7-enoate

C35H68NO8P (661.4682298)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-13-enoate

C35H68NO8P (661.4682298)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-hexadec-7-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-hexadec-7-enoate

C35H68NO8P (661.4682298)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (E)-icos-11-enoate

C35H68NO8P (661.4682298)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (E)-heptadec-9-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (E)-heptadec-9-enoate

C35H68NO8P (661.4682298)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-hexadec-7-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-hexadec-7-enoate

C35H68NO8P (661.4682298)


   

(2S)-2-amino-3-[[(2S)-3-decanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-3-decanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C33H60NO10P (661.395463)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-6-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-6-enoate

C35H68NO8P (661.4682298)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-4-enoate

C35H68NO8P (661.4682298)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] pentadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] pentadecanoate

C35H68NO8P (661.4682298)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (E)-icos-13-enoate

C35H68NO8P (661.4682298)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[(2R)-2-dodecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-dodecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] hexadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] hexadecanoate

C35H68NO8P (661.4682298)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-decanoyloxypropyl] (E)-icos-11-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-decanoyloxypropyl] (E)-icos-11-enoate

C35H68NO8P (661.4682298)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-4-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-4-enoate

C35H68NO8P (661.4682298)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-6-enoate

C35H68NO8P (661.4682298)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] octadec-17-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] octadec-17-enoate

C35H68NO8P (661.4682298)


   

[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-13-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-13-enoate

C35H68NO8P (661.4682298)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-decanoyloxypropyl] (E)-icos-13-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-decanoyloxypropyl] (E)-icos-13-enoate

C35H68NO8P (661.4682298)


   

[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[(2R)-3-decanoyloxy-2-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-decanoyloxy-2-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-9-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (E)-octadec-9-enoate

C35H68NO8P (661.4682298)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] octadec-17-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] octadec-17-enoate

C35H68NO8P (661.4682298)


   

[(2R)-3-[(E)-tetradec-9-enoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-tetradec-9-enoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] pentadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] pentadecanoate

C35H68NO8P (661.4682298)


   

[(2R)-3-dodecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H68NO8P (661.4682298)


   

(2R)-2-amino-3-[[(2S)-2-decanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-2-decanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C33H60NO10P (661.395463)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-octadec-7-enoate

C35H68NO8P (661.4682298)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C37H62N2O6P+ (661.4345261999999)


   

1-(9Z-hexadecenoyl)-2-tetradecanoyl-glycero-3-phosphoethanolamine

1-(9Z-hexadecenoyl)-2-tetradecanoyl-glycero-3-phosphoethanolamine

C35H68NO8P (661.4682298)


   

phosphatidylethanolamine 30:1

phosphatidylethanolamine 30:1

C35H68NO8P (661.4682298)


A 1,2-diacyl-sn-glycero-3-phosphoethanolamine zwitterion in which the acyl groups at C-1 and C-2 contain 30 carbons in total with 1 double bond.

   

MePC(26:1)

MePC(16:1_10:0)

C35H68NO8P (661.4682298)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PS P-14:0/14:1 or PS O-14:1/14:1

PS P-14:0/14:1 or PS O-14:1/14:1

C34H64NO9P (661.4318464)


   
   
   

PS P-16:1/12:0 or PS O-16:2/12:0

PS P-16:1/12:0 or PS O-16:2/12:0

C34H64NO9P (661.4318464)


   
   

PS P-18:1/10:0 or PS O-18:2/10:0

PS P-18:1/10:0 or PS O-18:2/10:0

C34H64NO9P (661.4318464)


   
   
   

PS P-28:1 or PS O-28:2

PS P-28:1 or PS O-28:2

C34H64NO9P (661.4318464)


   
   
   
   
   
   
   
   

GalCer 14:2;O2/18:4

GalCer 14:2;O2/18:4

C38H63NO8 (661.4553438)


   
   

GlcCer 14:2;O2/18:4

GlcCer 14:2;O2/18:4

C38H63NO8 (661.4553438)


   
   

HexCer 14:2;O2/18:4

HexCer 14:2;O2/18:4

C38H63NO8 (661.4553438)