Exact Mass: 654.3978918

Exact Mass Matches: 654.3978918

Found 71 metabolites which its exact mass value is equals to given mass value 654.3978918, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

(17E,19E,21E,23E,25E)-4,6,8,10,12,14,16,27-Octahydroxy-3-(1-hydroxyhexyl)-17,28-dimethyl-1-oxacyclooctacosa-17,19,21,23,25-pentaen-2-one

(17E,19E,21E,23E,25E)-4,6,8,10,12,14,16,27-Octahydroxy-3-(1-hydroxyhexyl)-17,28-dimethyl-1-oxacyclooctacosa-17,19,21,23,25-pentaen-2-one

C35H58O11 (654.3978918)


   

PA(12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-(dodecanoyloxy)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(12:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/12:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-3-(dodecanoyloxy)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(12:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/12:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-3-(dodecanoyloxy)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/12:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-3-(dodecanoyloxy)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/12:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-3-(dodecanoyloxy)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/12:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-3-(dodecanoyloxy)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/12:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0)

[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0)

[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0)

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0)

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H59O9P (654.3896493999999)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

FILIPIN III

4S,6S,8S,10R,12R,14R,16S,27S-octahydroxy-3R-(1R-hydroxy-hexyl)17,28R-dimethyl-oxacyclooctacosa-17E,119E,21E,21E,23E,25E-pentaen-2-one

C35H58O11 (654.3978918)


A macrolide that is the major component of a mixture of four isomeric polyene macrolides isolated from Streptomyces filipinensis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents

   
   
   
   

14beta-(8(14),9(11)-diene-18alpha-methoxycarbonyl-18-norvouacapen-16-yl)-18alpha-methoxycarbonyl-18-norvouacapene|mimosol E

14beta-(8(14),9(11)-diene-18alpha-methoxycarbonyl-18-norvouacapen-16-yl)-18alpha-methoxycarbonyl-18-norvouacapene|mimosol E

C42H54O6 (654.3920184000001)


   

(3beta,14beta,17beta,20S)-3,14,17,20-tetrahydroxy-21-methoxypregn-5-ene-3-O-beta-cymaropyranosyl-(1->4)-O-beta-digitoxopyranoside|perisepiumoside A

(3beta,14beta,17beta,20S)-3,14,17,20-tetrahydroxy-21-methoxypregn-5-ene-3-O-beta-cymaropyranosyl-(1->4)-O-beta-digitoxopyranoside|perisepiumoside A

C35H58O11 (654.3978918)


   
   
   
   

2-[4,5-dihydroxy-2-(hydroxymethyl)-6-(2-octadecylsulfanylethoxy)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

2-[4,5-dihydroxy-2-(hydroxymethyl)-6-(2-octadecylsulfanylethoxy)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C32H62O11S (654.4012622)


   

Filipine

FILIPIN III

C35H58O11 (654.3978918)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents

   

PA(12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C35H59O9P (654.3896493999999)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/12:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/12:0)

C35H59O9P (654.3896493999999)


   

PA(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C35H59O9P (654.3896493999999)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0)

C35H59O9P (654.3896493999999)


   

PA(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C35H59O9P (654.3896493999999)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0)

C35H59O9P (654.3896493999999)


   

PA(12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C35H59O9P (654.3896493999999)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/12:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/12:0)

C35H59O9P (654.3896493999999)


   

PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C35H59O9P (654.3896493999999)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/12:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/12:0)

C35H59O9P (654.3896493999999)


   

PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C35H59O9P (654.3896493999999)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/12:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/12:0)

C35H59O9P (654.3896493999999)


   

PA(12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C35H59O9P (654.3896493999999)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/12:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/12:0)

C35H59O9P (654.3896493999999)


   

PA(12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C35H59O9P (654.3896493999999)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/12:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/12:0)

C35H59O9P (654.3896493999999)


   

PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C35H59O9P (654.3896493999999)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0)

C35H59O9P (654.3896493999999)


   

PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C35H59O9P (654.3896493999999)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0)

C35H59O9P (654.3896493999999)


   

PA(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C35H59O9P (654.3896493999999)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0)

C35H59O9P (654.3896493999999)


   

PA(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C35H59O9P (654.3896493999999)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0)

C35H59O9P (654.3896493999999)


   
   
   
   
   
   
   

(2s,3r,4s,5r)-2-{[(1r,3r,6s,8r,11r,12s,13r,14r,15r,16r,17s)-13,14,17-trihydroxy-16-(hydroxymethyl)-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxane-3,4,5-triol

(2s,3r,4s,5r)-2-{[(1r,3r,6s,8r,11r,12s,13r,14r,15r,16r,17s)-13,14,17-trihydroxy-16-(hydroxymethyl)-15-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxane-3,4,5-triol

C35H58O11 (654.3978918)


   

(2s,3r,4s,5s,6r)-2-{[(2s,3s,4r,6r)-6-[(1s)-1-[(1r,3as,3bs,7r,9s,9ar,9bs,11as)-7,9-dihydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl]-3-hydroxy-4-methoxy-3,4-dimethyloxan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,3s,4r,6r)-6-[(1s)-1-[(1r,3as,3bs,7r,9s,9ar,9bs,11as)-7,9-dihydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl]-3-hydroxy-4-methoxy-3,4-dimethyloxan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H58O11 (654.3978918)