Exact Mass: 648.4906044
Exact Mass Matches: 648.4906044
Found 500 metabolites which its exact mass value is equals to given mass value 648.4906044
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PA(16:0/16:0)
PA(16:0/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/16:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-coA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776). [HMDB] PA(16:0/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/16:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids. Indeed, the concentration of phosphatidic acids is often over-estimated in tissues and biofluids as it can arise by inadvertent enzymatic hydrolysis during inappropriate storage or extraction conditions during analysis. The main biosynthetic route of phosphatidic acid in animal tissues involves sequential acylation of alpha-glycerophosphate by acyl-CoA derivatives of fatty acids. PAs are biologically active lipids that can stimulate a large range of responses in many different cell types, such as platelet aggregation, smooth muscle contraction, in vivo vasoactive effects, chemotaxis, expression of adhesion molecules, increased tight junction permeability of endothelial cells, induction of stress fibres, modulation of cardiac contractility, and many others. Diacylglycerols (DAGs) can be converted to PAs by DAG kinases and indirect evidence supports the notion that PAs alter the excitability of neurons. Phospholipase Ds (PLDs), which catalyze the conversion of glycerolphospholipids, particularly phosphatidylcholine, to PAs and the conversion of N-arachidonoyl-phosphatidylethanolamine (NAPE) to anandamide and PAs are activated by several inflammatory mediators including bradykinin, ATP and glutamate. PAs activate downstream signaling pathways such as PKCs and mitogen-activated protein kinases (MAPKs), which are linked to an increase in sensitivity of sensory neurons either during inflammation or in chronic pain models. Circumstantial evidence that PAs are converted to DAGs. (PMID: 12618218, 16185776).
PA(10:0/22:0)
PA(10:0/22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/22:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:0/14:0)
PA(18:0/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/14:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/12:0)
PA(20:0/12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/12:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of lauric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:0/10:0)
PA(22:0/10:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/10:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of capric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(10:0/i-22:0)
PA(10:0/i-22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/i-22:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of isodocosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/i-12:0)
PA(20:0/i-12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/i-12:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(8:0/i-24:0)
PA(8:0/i-24:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/i-24:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of isotetracosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-13:0/i-19:0)
PA(a-13:0/i-19:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/i-19:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isononadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-12:0/i-20:0)
PA(i-12:0/i-20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/i-20:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-13:0/i-19:0)
PA(i-13:0/i-19:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/i-19:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isononadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-20:0/12:0)
PA(i-20:0/12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/12:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of lauric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-20:0/i-12:0)
PA(i-20:0/i-12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/i-12:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-22:0/10:0)
PA(i-22:0/10:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-22:0/10:0), in particular, consists of one chain of isodocosanoic acid at the C-1 position and one chain of capric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-24:0/8:0)
PA(i-24:0/8:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-24:0/8:0), in particular, consists of one chain of isotetracosanoic acid at the C-1 position and one chain of caprylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
2,3-Bis(palmitoyloxy)propyl dihydrogen phosphate
Menaquinone-7
DG(15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/15:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(15:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(15:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/15:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)
DG(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0/0:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(16:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
DG(16:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/16:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)
DG(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0/0:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(16:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
DG(16:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/16:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)
DG(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0/0:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(16:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
DG(16:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/16:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(17:0/20:3(6,8,11)-OH(5)/0:0)
DG(17:0/20:3(6,8,11)-OH(5)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(17:0/20:3(6,8,11)-OH(5)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:3(6,8,11)-OH(5)/17:0/0:0)
DG(20:3(6,8,11)-OH(5)/17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:3(6,8,11)-OH(5)/17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(17:0/0:0/20:3(6,8,11)-OH(5))
DG(17:0/0:0/20:3(6,8,11)-OH(5)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:3(6,8,11)-OH(5)/0:0/17:0)
DG(20:3(6,8,11)-OH(5)/0:0/17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(19:0/18:2(10E,12Z)+=O(9)/0:0)
DG(19:0/18:2(10E,12Z)+=O(9)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(19:0/18:2(10E,12Z)+=O(9)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:2(10E,12Z)+=O(9)/19:0/0:0)
DG(18:2(10E,12Z)+=O(9)/19:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:2(10E,12Z)+=O(9)/19:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(19:0/0:0/18:2(10E,12Z)+=O(9))
DG(19:0/0:0/18:2(10E,12Z)+=O(9)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:2(10E,12Z)+=O(9)/0:0/19:0)
DG(18:2(10E,12Z)+=O(9)/0:0/19:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(19:0/18:2(9Z,11E)+=O(13)/0:0)
DG(19:0/18:2(9Z,11E)+=O(13)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(19:0/18:2(9Z,11E)+=O(13)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:2(9Z,11E)+=O(13)/19:0/0:0)
DG(18:2(9Z,11E)+=O(13)/19:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:2(9Z,11E)+=O(13)/19:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(19:0/0:0/18:2(9Z,11E)+=O(13))
DG(19:0/0:0/18:2(9Z,11E)+=O(13)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:2(9Z,11E)+=O(13)/0:0/19:0)
DG(18:2(9Z,11E)+=O(13)/0:0/19:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(19:0/18:3(10,12,15)-OH(9)/0:0)
DG(19:0/18:3(10,12,15)-OH(9)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(19:0/18:3(10,12,15)-OH(9)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:3(10,12,15)-OH(9)/19:0/0:0)
DG(18:3(10,12,15)-OH(9)/19:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(10,12,15)-OH(9)/19:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(19:0/0:0/18:3(10,12,15)-OH(9))
DG(19:0/0:0/18:3(10,12,15)-OH(9)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:3(10,12,15)-OH(9)/0:0/19:0)
DG(18:3(10,12,15)-OH(9)/0:0/19:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(19:0/18:3(9,11,15)-OH(13)/0:0)
DG(19:0/18:3(9,11,15)-OH(13)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(19:0/18:3(9,11,15)-OH(13)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:3(9,11,15)-OH(13)/19:0/0:0)
DG(18:3(9,11,15)-OH(13)/19:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(9,11,15)-OH(13)/19:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(19:0/0:0/18:3(9,11,15)-OH(13))
DG(19:0/0:0/18:3(9,11,15)-OH(13)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:3(9,11,15)-OH(13)/0:0/19:0)
DG(18:3(9,11,15)-OH(13)/0:0/19:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(a-15:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/a-15:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/a-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-17:0/20:3(6,8,11)-OH(5)/0:0)
DG(a-17:0/20:3(6,8,11)-OH(5)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-17:0/20:3(6,8,11)-OH(5)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(i-15:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-15:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)
DG(i-16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-16:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-16:0/0:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-16:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
DG(i-16:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/i-16:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/i-16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)
DG(i-16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-16:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-16:0/0:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-16:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
DG(i-16:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/i-16:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/i-16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)
DG(i-16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-16:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-16:0/0:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-16:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
DG(i-16:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/i-16:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/i-16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
1-(alpha-D-glucopyranosyloxy)-(3R,27S,29R)-triacontanetriol
(2S,3R,26S,27S)-2,27-diamino-1,3,26-trihydroxynonacosan-18-one-1-beta-D-glucoside|calyxoside
(2S,3R,4E,2R)-2-N-(2-hydroxy-13-methyltetradecanoyl)-15-methyl-4-hexadecasphingenyl-1-phosphoethanolamine
C34H69N2O7P (648.4842133999999)
PE-Cer(d14:1(4E)/18:0(2OH))
C34H69N2O7P (648.4842133999999)
1-(O-alpha-D-glucopyranosyl)-(1,3R,27S,29R)-triacontanetetraol
1-(O-alpha-D-galactopyranosyl)-(1,3R,27S,29R)-triacontanetetraol
1-(8-[5]-ladderane-octanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerol
1-(O-alpha-D-glucopyranosyl)-(1,3R,27S,29R)-triacontanetetrol
1-(O-alpha-D-galactopyranosyl)-(1,3R,27S,29R)-triacontanetetrol
CerPE 32:1;O3
C34H69N2O7P (648.4842133999999)
Menaquinone-7
Menaquinone-7 is a menaquinone whose side-chain contains seven isoprene units in an all-trans-configutation. It has a role as a Mycoplasma genitalium metabolite, a bone density conservation agent, an Escherichia coli metabolite, a human blood serum metabolite and a cofactor. D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics Menaquinone 7. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2124-57-4 (retrieved 2024-09-09) (CAS RN: 2124-57-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) icosanoate
2-[2-[3,4-Bis(2-methoxyethoxy)oxolan-2-yl]-2-(2-methoxyethoxy)ethoxy]ethyl octadecanoate
DG(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0/0:0)
DG(a-15:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/a-15:0)
DG(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0/0:0)
DG(i-15:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-15:0)
2-[[(2R)-2-dodecanoyloxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-dodecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-decanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[3-Hydroxy-2-(propanoylamino)heptacosyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Butanoylamino)-3-hydroxyhexacosyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(octanoylamino)docosyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-hydroxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-hydroxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-hydroxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[3-Hydroxy-2-(pentanoylamino)pentacosyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[3-Hydroxy-2-(nonanoylamino)henicosyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Henicosanoylamino)-3-hydroxynonyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Heptanoylamino)-3-hydroxytricosyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[2-(Hexanoylamino)-3-hydroxytetracosyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
(2-Acetamido-3-hydroxyoctacosyl) 2-(trimethylazaniumyl)ethyl phosphate
[1-hydroxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[2-(Decanoylamino)-3-hydroxyicosyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(nonadecanoylamino)undecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(icosanoylamino)decyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Heptadecanoylamino)-3-hydroxytridecyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[12-hydroxy-10,13-dimethyl-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
[3-Hydroxy-2-(octadecanoylamino)dodecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(undecanoylamino)nonadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Docosanoylamino)-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Hexadecanoylamino)-3-hydroxytetradecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(pentadecanoylamino)pentadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(tetradecanoylamino)hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(tridecanoylamino)heptadecyl] 2-(trimethylazaniumyl)ethyl phosphate
(1-Hexanoyloxy-3-phosphonooxypropan-2-yl) hexacosanoate
(1-Pentanoyloxy-3-phosphonooxypropan-2-yl) heptacosanoate
(1-Octanoyloxy-3-phosphonooxypropan-2-yl) tetracosanoate
(1-Heptanoyloxy-3-phosphonooxypropan-2-yl) pentacosanoate
(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate
(1-Pentadecanoyloxy-3-phosphonooxypropan-2-yl) heptadecanoate
(1-Phosphonooxy-3-tetradecanoyloxypropan-2-yl) octadecanoate
(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) nonadecanoate
(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) henicosanoate
(1-Decanoyloxy-3-phosphonooxypropan-2-yl) docosanoate
2-[[(2R)-3-decanoyloxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
N-(tridecanoyl)-heptadecasphinganine-1-phosphocholine
N-(pentadecanoyl)-pentadecasphinganine-1-phosphocholine
N-(hexadecanoyl)-tetradecasphinganine-1-phosphocholine
[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium
2-[[(2R)-3-dodecanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R,3S)-2-(decanoylamino)-3-hydroxyicosyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium
2-[[(2R)-2-dodecanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
2-[[(2S)-3-[(E)-hexadec-1-enoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-dodecanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
2-[[(2S)-2-decanoyloxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] henicosanoate
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] henicosanoate
[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
2-[[(2S)-2-decanoyloxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoate
2-[hydroxy-[(2S)-3-[(E)-pentadec-9-enoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoate
[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-dodecanoyloxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-decanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
[3-[2,3-bis[[(7E,9E)-tetradeca-7,9-dienoyl]oxy]propoxy]-1-carboxypropyl]-trimethylazanium
[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-decanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
2-[[(2R)-3-decanoyloxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-dodecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-nonanoyloxy-3-[(Z)-octadec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-decanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-tridecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-octanoyloxypropoxy]propyl]-trimethylazanium
[3-[3-butanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-1-carboxypropyl]-trimethylazanium
2-[hydroxy-[3-[(Z)-tetradec-9-enoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-decanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
2-[[2-[(Z)-henicos-11-enoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-hexanoyloxypropoxy]propyl]-trimethylazanium
2-[[3-acetyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
2-[[3-heptanoyloxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-hexanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-butanoyloxy-2-[(Z)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-heptadec-9-enoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-hexadec-9-enoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-tetradecoxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[3-[3-acetyloxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-1-carboxypropyl]-trimethylazanium
2-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-octoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[carboxy-[2-hydroxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[[2-heptanoyloxy-3-[(Z)-icos-11-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-nonoxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-propanoyloxy-3-[(Z)-tetracos-13-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-dodecoxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-tetradecanoyloxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-tetradec-9-enoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-docos-13-enoxy]-2-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-undecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-decoxy-2-[(Z)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-henicos-11-enoxy]-2-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-decanoyloxy-3-[(Z)-heptadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-dodecanoyloxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
Menaquinone-7
A menaquinone whose side-chain contains seven isoprene units in an all-trans-configutation. D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics
1,2-dihexadecanoyl-sn-glycerol-3-phosphate
A 1-acyl-2-hexadecanoyl-sn-glycero-3-phosphate in which the 1-acyl group is also hexadecanoyl.
dihexadecanoyl phosphatidic acid
A phosphatidic acid in which the phosphatidyl acyl groups are both palmitoyl (hexadecanoyl).
1-octadecanoyl-2-tetradecanoyl-glycero-3-phosphate
1-tetradecanoyl-2-octadecanoyl-glycero-3-phosphate
1-pentadecanoyl-2-heptadecanoyl-glycero-3-phosphate
1-heptadecanoyl-2-pentadecanoyl-glycero-3-phosphate
PMe(32:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PEt(31:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
BisMePA(30:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
CerPE(33:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved