Exact Mass: 640.5219

Exact Mass Matches: 640.5219

Found 439 metabolites which its exact mass value is equals to given mass value 640.5219, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

DG(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-(hexadecanoyloxy)-3-hydroxypropan-2-yl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C41H68O5 (640.5066)


DG(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

(2S)-1-[(9Z)-hexadec-9-enoyloxy]-3-hydroxypropan-2-yl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C41H68O5 (640.5066)


DG(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(16:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-[(9Z)-hexadec-9-enoyloxy]-3-hydroxypropan-2-yl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C41H68O5 (640.5066)


DG(16:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(16:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

(2S)-1-hydroxy-3-[(11Z)-octadec-11-enoyloxy]propan-2-yl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H68O5 (640.5066)


DG(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

(2S)-1-hydroxy-3-[(9Z)-octadec-9-enoyloxy]propan-2-yl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H68O5 (640.5066)


DG(18:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

(2S)-1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propan-2-yl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C41H68O5 (640.5066)


DG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

(2S)-1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propan-2-yl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H68O5 (640.5066)


DG(18:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:3(6Z,9Z,12Z)/20:3(5Z,8Z,11Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propan-2-yl (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C41H68O5 (640.5066)


DG(18:3(6Z,9Z,12Z)/20:3(5Z,8Z,11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/20:3(5Z,8Z,11Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of mead acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the mead acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:3(6Z,9Z,12Z)/20:3(8Z,11Z,14Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propan-2-yl (8Z,11Z,14Z)-icosa-8,11,14-trienoate

C41H68O5 (640.5066)


DG(18:3(6Z,9Z,12Z)/20:3(8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/20:3(8Z,11Z,14Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:3(9Z,12Z,15Z)/20:3(5Z,8Z,11Z)/0:0)

(2S)-1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propan-2-yl (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C41H68O5 (640.5066)


DG(18:3(9Z,12Z,15Z)/20:3(5Z,8Z,11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/20:3(5Z,8Z,11Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of mead acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the mead acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(9Z,12Z,15Z)/20:3(5Z,8Z,11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/20:3(5Z,8Z,11Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of mead acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the mead acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:3(9Z,12Z,15Z)/20:3(8Z,11Z,14Z)/0:0)

(2S)-1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propan-2-yl (8Z,11Z,14Z)-icosa-8,11,14-trienoate

C41H68O5 (640.5066)


DG(18:3(9Z,12Z,15Z)/20:3(8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/20:3(8Z,11Z,14Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(9Z,12Z,15Z)/20:3(8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/20:3(8Z,11Z,14Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:4(6Z,9Z,12Z,15Z)/20:2(11Z,14Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propan-2-yl (11Z,14Z)-icosa-11,14-dienoate

C41H68O5 (640.5066)


DG(18:4(6Z,9Z,12Z,15Z)/20:2(11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/20:2(11Z,14Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the eicosadienoic acid moiety is derived from fish oils and liver. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:4(6Z,9Z,12Z,15Z)/20:2(11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/20:2(11Z,14Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the eicosadienoic acid moiety is derived from fish oils and liver. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:2(11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl (11Z,14Z)-icosa-11,14-dienoate

C41H68O5 (640.5066)


DG(20:2(11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:2(11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:2(11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:2(11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3(5Z,8Z,11Z)/18:3(6Z,9Z,12Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C41H68O5 (640.5066)


DG(20:3(5Z,8Z,11Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(5Z,8Z,11Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:3(5Z,8Z,11Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(5Z,8Z,11Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3(5Z,8Z,11Z)/18:3(9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C41H68O5 (640.5066)


DG(20:3(5Z,8Z,11Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(5Z,8Z,11Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:3(5Z,8Z,11Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(5Z,8Z,11Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3(8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (8Z,11Z,14Z)-icosa-8,11,14-trienoate

C41H68O5 (640.5066)


DG(20:3(8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:3(8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3(8Z,11Z,14Z)/18:3(9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (8Z,11Z,14Z)-icosa-8,11,14-trienoate

C41H68O5 (640.5066)


DG(20:3(8Z,11Z,14Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(8Z,11Z,14Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)/0:0)

(2S)-3-hydroxy-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C41H68O5 (640.5066)


DG(20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)/0:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the linoleic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:4(8Z,11Z,14Z,17Z)/18:2(9Z,12Z)/0:0)

(2S)-3-hydroxy-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propyl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H68O5 (640.5066)


DG(20:4(8Z,11Z,14Z,17Z)/18:2(9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(8Z,11Z,14Z,17Z)/18:2(9Z,12Z)/0:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the linoleic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(11Z)/0:0)

(2S)-3-hydroxy-2-[(11Z)-octadec-11-enoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H68O5 (640.5066)


DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(11Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(9Z)/0:0)

(2S)-3-hydroxy-2-[(9Z)-octadec-9-enoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H68O5 (640.5066)


DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(9Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of oleic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/16:1(9Z)/0:0)

(2S)-2-[(9Z)-hexadec-9-enoyloxy]-3-hydroxypropyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C41H68O5 (640.5066)


DG(22:5(4Z,7Z,10Z,13Z,16Z)/16:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/16:1(9Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0)

(2S)-2-[(9Z)-hexadec-9-enoyloxy]-3-hydroxypropyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C41H68O5 (640.5066)


DG(22:5(7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0/0:0)

(2S)-2-(hexadecanoyloxy)-3-hydroxypropyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C41H68O5 (640.5066)


DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(16:0/0:0/22:6n3)

(2R)-3-(hexadecanoyloxy)-2-hydroxypropyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C41H68O5 (640.5066)


DG(16:0/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(16:0/0:0/22:6n3), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(16:1n7/0:0/22:5n6)

(2R)-3-[(7Z)-Hexadec-7-enoyloxy]-2-hydroxypropyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoic acid

C41H68O5 (640.5066)


DG(16:1n7/0:0/22:5n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(16:1n7/0:0/22:5n6), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(16:1n7/0:0/22:5n3)

(2R)-3-[(7Z)-Hexadec-7-enoyloxy]-2-hydroxypropyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoic acid

C41H68O5 (640.5066)


DG(16:1n7/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(16:1n7/0:0/22:5n3), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:1n7/0:0/20:5n3)

(2R)-2-Hydroxy-3-[(11Z)-octadec-11-enoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoic acid

C41H68O5 (640.5066)


DG(18:1n7/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:1n7/0:0/20:5n3), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:1n9/0:0/20:5n3)

(2R)-2-Hydroxy-3-[(9Z)-octadec-9-enoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoic acid

C41H68O5 (640.5066)


DG(18:1n9/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:1n9/0:0/20:5n3), in particular, consists of one chain of oleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:3n9/0:0/18:3n6)

(2S)-2-Hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (5Z,8Z,11Z)-icosa-5,8,11-trienoic acid

C41H68O5 (640.5066)


DG(20:3n9/0:0/18:3n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:3n9/0:0/18:3n6), in particular, consists of one chain of mead acid at the C-1 position and one chain of g-linolenic acid at the C-3 position. The mead acid moiety is derived from fish oils, liver and kidney, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:3n9/0:0/18:3n3)

(2S)-2-Hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (5Z,11Z)-icosa-5,8,11-trienoic acid

C41H68O5 (640.5066)


DG(20:3n9/0:0/18:3n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:3n9/0:0/18:3n3), in particular, consists of one chain of mead acid at the C-1 position and one chain of a-linolenic acid at the C-3 position. The mead acid moiety is derived from fish oils, liver and kidney, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:3n6/0:0/20:3n6)

(2S)-2-Hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (8Z,11Z,14Z)-icosa-8,11,14-trienoic acid

C41H68O5 (640.5066)


DG(18:3n6/0:0/20:3n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n6/0:0/20:3n6), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-3 position. The g-linolenic acid moiety is derived from animal fats, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:2n6/0:0/18:4n3)

(2R)-2-Hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl (11Z,14Z)-icosa-11,14-dienoic acid

C41H68O5 (640.5066)


DG(20:2n6/0:0/18:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:2n6/0:0/18:4n3), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of stearidonic acid at the C-3 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:3n6/0:0/18:3n3)

(2S)-2-Hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (8Z,11Z,14Z)-icosa-8,11,14-trienoic acid

C41H68O5 (640.5066)


DG(20:3n6/0:0/18:3n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:3n6/0:0/18:3n3), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of a-linolenic acid at the C-3 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(14:0/PGF1alpha/0:0)

(2S)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-hydroxypropyl tetradecanoic acid

C37H68O8 (640.4914)


DG(14:0/PGF1alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(14:0/PGF1alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGF1alpha/14:0/0:0)

(2S)-1-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-hydroxypropan-2-yl tetradecanoic acid

C37H68O8 (640.4914)


DG(PGF1alpha/14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGF1alpha/14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(14:0/0:0/PGF1alpha)

(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-hydroxypropyl tetradecanoic acid

C37H68O8 (640.4914)


DG(14:0/0:0/PGF1alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGF1alpha/0:0/14:0)

(2S)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-hydroxypropyl tetradecanoic acid

C37H68O8 (640.4914)


DG(PGF1alpha/0:0/14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(17:0/18:1(12Z)-2OH(9,10)/0:0)

(2S)-1-(Heptadecanoyloxy)-3-hydroxypropan-2-yl (9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C38H72O7 (640.5278)


DG(17:0/18:1(12Z)-2OH(9,10)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(17:0/18:1(12Z)-2OH(9,10)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:1(12Z)-2OH(9,10)/17:0/0:0)

(2S)-2-(Heptadecanoyloxy)-3-hydroxypropyl (9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C38H72O7 (640.5278)


DG(18:1(12Z)-2OH(9,10)/17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:1(12Z)-2OH(9,10)/17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(17:0/0:0/18:1(12Z)-2OH(9,10))

(2R)-3-(Heptadecanoyloxy)-2-hydroxypropyl (9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C38H72O7 (640.5278)


DG(17:0/0:0/18:1(12Z)-2OH(9,10)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(18:1(12Z)-2OH(9,10)/0:0/17:0)

(2S)-3-(Heptadecanoyloxy)-2-hydroxypropyl (9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C38H72O7 (640.5278)


DG(18:1(12Z)-2OH(9,10)/0:0/17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(a-17:0/18:1(12Z)-2OH(9,10)/0:0)

(2S)-1-Hydroxy-3-[(14-methylhexadecanoyl)oxy]propan-2-yl (9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C38H72O7 (640.5278)


DG(a-17:0/18:1(12Z)-2OH(9,10)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-17:0/18:1(12Z)-2OH(9,10)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:1(12Z)-2OH(9,10)/a-17:0/0:0)

(2S)-3-Hydroxy-2-[(14-methylhexadecanoyl)oxy]propyl (9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C38H72O7 (640.5278)


DG(18:1(12Z)-2OH(9,10)/a-17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:1(12Z)-2OH(9,10)/a-17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(a-17:0/0:0/18:1(12Z)-2OH(9,10))

(2R)-2-Hydroxy-3-[(14-methylhexadecanoyl)oxy]propyl (9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C38H72O7 (640.5278)


DG(a-17:0/0:0/18:1(12Z)-2OH(9,10)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(18:1(12Z)-2OH(9,10)/0:0/a-17:0)

(2S)-2-Hydroxy-3-[(14-methylhexadecanoyl)oxy]propyl (9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C38H72O7 (640.5278)


DG(18:1(12Z)-2OH(9,10)/0:0/a-17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-14:0/PGF1alpha/0:0)

(2S)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-hydroxypropyl 12-methyltridecanoic acid

C37H68O8 (640.4914)


DG(i-14:0/PGF1alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-14:0/PGF1alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGF1alpha/i-14:0/0:0)

(2S)-1-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-hydroxypropan-2-yl 12-methyltridecanoic acid

C37H68O8 (640.4914)


DG(PGF1alpha/i-14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGF1alpha/i-14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-14:0/0:0/PGF1alpha)

(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-hydroxypropyl 12-methyltridecanoic acid

C37H68O8 (640.4914)


DG(i-14:0/0:0/PGF1alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGF1alpha/0:0/i-14:0)

(2S)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-hydroxypropyl 12-methyltridecanoic acid

C37H68O8 (640.4914)


DG(PGF1alpha/0:0/i-14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-17:0/18:1(12Z)-2OH(9,10)/0:0)

(2S)-1-Hydroxy-3-[(15-methylhexadecanoyl)oxy]propan-2-yl (9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C38H72O7 (640.5278)


DG(i-17:0/18:1(12Z)-2OH(9,10)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-17:0/18:1(12Z)-2OH(9,10)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:1(12Z)-2OH(9,10)/i-17:0/0:0)

(2S)-3-Hydroxy-2-[(15-methylhexadecanoyl)oxy]propyl (9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C38H72O7 (640.5278)


DG(18:1(12Z)-2OH(9,10)/i-17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:1(12Z)-2OH(9,10)/i-17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-17:0/0:0/18:1(12Z)-2OH(9,10))

(2R)-2-Hydroxy-3-[(15-methylhexadecanoyl)oxy]propyl (9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C38H72O7 (640.5278)


DG(i-17:0/0:0/18:1(12Z)-2OH(9,10)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(18:1(12Z)-2OH(9,10)/0:0/i-17:0)

(2S)-2-Hydroxy-3-[(15-methylhexadecanoyl)oxy]propyl (9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C38H72O7 (640.5278)


DG(18:1(12Z)-2OH(9,10)/0:0/i-17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

Montanacin A

Montanacin A

C37H68O8 (640.4914)


   

Squadiolin B

Squadiolin B

C37H68O8 (640.4914)


   

Squadiolin A

Squadiolin A

C37H68O8 (640.4914)


   

Nor-(3S,14S)-Petrocortyne A

Nor-(3S,14S)-Petrocortyne A

C45H68O2 (640.5219)


   
   
   

heliantriol A1 3-laurate

heliantriol A1 3-laurate

C42H72O4 (640.543)


   

heliantriol B2 3-laurate

heliantriol B2 3-laurate

C42H72O4 (640.543)


   

longispinogenin 3-laurate

longispinogenin 3-laurate

C42H72O4 (640.543)


   

20,21alpha-epoxy-20,21-dihydrofaradiol 3-laurate

20,21alpha-epoxy-20,21-dihydrofaradiol 3-laurate

C42H72O4 (640.543)


   

dihydrocherimoline

dihydrocherimoline

C37H68O8 (640.4914)


   

heliantriol C 3-laurate|heliantriol C 3-O-laurate

heliantriol C 3-laurate|heliantriol C 3-O-laurate

C42H72O4 (640.543)


   

20(30)-taraxastene-3beta,16beta,21alpha-triol 3-laurate|arnitriol A 3-laurate

20(30)-taraxastene-3beta,16beta,21alpha-triol 3-laurate|arnitriol A 3-laurate

C42H72O4 (640.543)


   

heliantriol F 3-laurate

heliantriol F 3-laurate

C42H72O4 (640.543)


   

DG(18:3/20:3/0:0)[iso2]

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-sn-glycerol

C41H68O5 (640.5066)


   

DG(18:2/20:4/0:0)[iso2]

1-(9Z,12Z-octadecadienoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycerol

C41H68O5 (640.5066)


   

DG(18:1/20:5/0:0)[iso2]

1-(9Z-octadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerol

C41H68O5 (640.5066)


   

DG(16:1/22:5/0:0)[iso2]

1-(9Z-hexadecenoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycerol

C41H68O5 (640.5066)


   

DG(16:0/22:6/0:0)[iso2]

1-hexadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C41H68O5 (640.5066)


   

Diglyceride

1-homo-gamma-linolenoyl-2-alpha-linolenoyl-sn-glycerol

C41H68O5 (640.5066)


   

Topostin D654

N-(3R-(13-methyl-tetradecanoyloxy)-hexadecanoyl)-glycylserine

C36H68N2O7 (640.5026)


   

DG 38:6

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(11Z,14Z-eicosadienoyl)-sn-glycerol

C41H68O5 (640.5066)


   

[[(1a,3b,5E,7E,22E)-9,10-Secoergosta-5,7,10(19),22-tetraene-1,3-diyl]bis(oxy)]bis[(1,1-dimethylethyl)dimethylsilane]

[[(1a,3b,5E,7E,22E)-9,10-Secoergosta-5,7,10(19),22-tetraene-1,3-diyl]bis(oxy)]bis[(1,1-dimethylethyl)dimethylsilane]

C40H72O2Si2 (640.5071)


   

2,3-di(nonyl)phenol,formaldehyde,2-nonylphenol,oxirane

2,3-di(nonyl)phenol,formaldehyde,2-nonylphenol,oxirane

C42H72O4 (640.543)


   

PENTAERYTHRITOL TETRA(2-ETHYLHEXANOATE)

PENTAERYTHRITOL TETRA(2-ETHYLHEXANOATE)

C37H68O8 (640.4914)


   

DG(14:0/PGF1alpha/0:0)

DG(14:0/PGF1alpha/0:0)

C37H68O8 (640.4914)


   

DG(PGF1alpha/14:0/0:0)

DG(PGF1alpha/14:0/0:0)

C37H68O8 (640.4914)


   

DG(14:0/0:0/PGF1alpha)

DG(14:0/0:0/PGF1alpha)

C37H68O8 (640.4914)


   

DG(PGF1alpha/0:0/14:0)

DG(PGF1alpha/0:0/14:0)

C37H68O8 (640.4914)


   

DG(i-14:0/PGF1alpha/0:0)

DG(i-14:0/PGF1alpha/0:0)

C37H68O8 (640.4914)


   

DG(PGF1alpha/i-14:0/0:0)

DG(PGF1alpha/i-14:0/0:0)

C37H68O8 (640.4914)


   

DG(i-14:0/0:0/PGF1alpha)

DG(i-14:0/0:0/PGF1alpha)

C37H68O8 (640.4914)


   

DG(PGF1alpha/0:0/i-14:0)

DG(PGF1alpha/0:0/i-14:0)

C37H68O8 (640.4914)


   

DG(a-17:0/18:1(12Z)-2OH(9,10)/0:0)

DG(a-17:0/18:1(12Z)-2OH(9,10)/0:0)

C38H72O7 (640.5278)


   

DG(18:1(12Z)-2OH(9,10)/a-17:0/0:0)

DG(18:1(12Z)-2OH(9,10)/a-17:0/0:0)

C38H72O7 (640.5278)


   

DG(a-17:0/0:0/18:1(12Z)-2OH(9,10))

DG(a-17:0/0:0/18:1(12Z)-2OH(9,10))

C38H72O7 (640.5278)


   

DG(18:1(12Z)-2OH(9,10)/0:0/a-17:0)

DG(18:1(12Z)-2OH(9,10)/0:0/a-17:0)

C38H72O7 (640.5278)


   

DG(i-17:0/18:1(12Z)-2OH(9,10)/0:0)

DG(i-17:0/18:1(12Z)-2OH(9,10)/0:0)

C38H72O7 (640.5278)


   

DG(18:1(12Z)-2OH(9,10)/i-17:0/0:0)

DG(18:1(12Z)-2OH(9,10)/i-17:0/0:0)

C38H72O7 (640.5278)


   

DG(i-17:0/0:0/18:1(12Z)-2OH(9,10))

DG(i-17:0/0:0/18:1(12Z)-2OH(9,10))

C38H72O7 (640.5278)


   

DG(18:1(12Z)-2OH(9,10)/0:0/i-17:0)

DG(18:1(12Z)-2OH(9,10)/0:0/i-17:0)

C38H72O7 (640.5278)


   

DG(17:0/18:1(12Z)-2OH(9,10)/0:0)

DG(17:0/18:1(12Z)-2OH(9,10)/0:0)

C38H72O7 (640.5278)


   

DG(18:1(12Z)-2OH(9,10)/17:0/0:0)

DG(18:1(12Z)-2OH(9,10)/17:0/0:0)

C38H72O7 (640.5278)


   

DG(17:0/0:0/18:1(12Z)-2OH(9,10))

DG(17:0/0:0/18:1(12Z)-2OH(9,10))

C38H72O7 (640.5278)


   

DG(18:1(12Z)-2OH(9,10)/0:0/17:0)

DG(18:1(12Z)-2OH(9,10)/0:0/17:0)

C38H72O7 (640.5278)


   

(1-hexadecanoyloxy-3-hydroxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

(1-hexadecanoyloxy-3-hydroxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C41H68O5 (640.5066)


   

NAGlySer 15:0/16:0

NAGlySer 15:0/16:0

C36H68N2O7 (640.5026)


   

NAGlySer 13:0/18:0

NAGlySer 13:0/18:0

C36H68N2O7 (640.5026)


   

NAGlySer 16:0/15:0

NAGlySer 16:0/15:0

C36H68N2O7 (640.5026)


   

NAGlySer 17:0/14:0

NAGlySer 17:0/14:0

C36H68N2O7 (640.5026)


   

NAGlySer 19:0/12:0

NAGlySer 19:0/12:0

C36H68N2O7 (640.5026)


   

NAGlySer 12:0/19:0

NAGlySer 12:0/19:0

C36H68N2O7 (640.5026)


   

NAGlySer 14:0/17:0

NAGlySer 14:0/17:0

C36H68N2O7 (640.5026)


   

NAGlySer 10:0/21:0

NAGlySer 10:0/21:0

C36H68N2O7 (640.5026)


   

NAGlySer 18:0/13:0

NAGlySer 18:0/13:0

C36H68N2O7 (640.5026)


   

NAGlySer 20:0/11:0

NAGlySer 20:0/11:0

C36H68N2O7 (640.5026)


   

NAGlySer 21:0/10:0

NAGlySer 21:0/10:0

C36H68N2O7 (640.5026)


   

NAGlySer 11:0/20:0

NAGlySer 11:0/20:0

C36H68N2O7 (640.5026)


   

NAOrn 18:3/16:3

NAOrn 18:3/16:3

C39H64N2O5 (640.4815)


   

NAOrn 24:6/10:0

NAOrn 24:6/10:0

C39H64N2O5 (640.4815)


   

NAOrn 18:4/16:2

NAOrn 18:4/16:2

C39H64N2O5 (640.4815)


   

NAOrn 20:5/14:1

NAOrn 20:5/14:1

C39H64N2O5 (640.4815)


   

NAOrn 16:4/18:2

NAOrn 16:4/18:2

C39H64N2O5 (640.4815)


   

NAOrn 22:6/12:0

NAOrn 22:6/12:0

C39H64N2O5 (640.4815)


   

NAOrn 18:5/16:1

NAOrn 18:5/16:1

C39H64N2O5 (640.4815)


   

NAOrn 16:3/18:3

NAOrn 16:3/18:3

C39H64N2O5 (640.4815)


   

[1-hydroxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-hydroxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C42H72O4 (640.543)


   

[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (Z)-nonadec-9-enoate

[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (Z)-nonadec-9-enoate

C42H72O4 (640.543)


   

[1-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-3-hydroxypropan-2-yl] tridecanoate

[1-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-3-hydroxypropan-2-yl] tridecanoate

C42H72O4 (640.543)


   

[1-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-3-hydroxypropan-2-yl] (Z)-tridec-9-enoate

[1-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-3-hydroxypropan-2-yl] (Z)-tridec-9-enoate

C42H72O4 (640.543)


   

[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate

C42H72O4 (640.543)


   

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C42H72O4 (640.543)


   

(1-hydroxy-3-tridecoxypropan-2-yl) (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

(1-hydroxy-3-tridecoxypropan-2-yl) (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C42H72O4 (640.543)


   

(1-hydroxy-3-pentadecoxypropan-2-yl) (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

(1-hydroxy-3-pentadecoxypropan-2-yl) (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C42H72O4 (640.543)


   

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-henicos-11-enoate

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-henicos-11-enoate

C42H72O4 (640.543)


   

(1-hydroxy-3-undecoxypropan-2-yl) (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

(1-hydroxy-3-undecoxypropan-2-yl) (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

C42H72O4 (640.543)


   

[1-hydroxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] pentadecanoate

[1-hydroxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] pentadecanoate

C42H72O4 (640.543)


   

[1-hydroxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-hydroxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (Z)-pentadec-9-enoate

C42H72O4 (640.543)


   

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C42H72O4 (640.543)


   

[1-[(Z)-henicos-11-enoxy]-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[(Z)-henicos-11-enoxy]-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C42H72O4 (640.543)


   

[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[(11Z,14Z)-henicosa-11,14-dienoxy]-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C42H72O4 (640.543)


   

[1-hydroxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-hydroxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C42H72O4 (640.543)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-hydroxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-hydroxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C42H72O4 (640.543)


   

[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-hydroxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-hydroxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C42H72O4 (640.543)


   

[1-hydroxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

[1-hydroxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

C42H72O4 (640.543)


   

[1-hydroxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-hydroxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C42H72O4 (640.543)


   

[1-hydroxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propan-2-yl] undecanoate

[1-hydroxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propan-2-yl] undecanoate

C42H72O4 (640.543)


   

(1-heptadecoxy-3-hydroxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

(1-heptadecoxy-3-hydroxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C42H72O4 (640.543)


   

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-hydroxypropan-2-yl] heptadecanoate

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-hydroxypropan-2-yl] heptadecanoate

C42H72O4 (640.543)


   

[1-[(Z)-heptadec-9-enoxy]-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(Z)-heptadec-9-enoxy]-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C42H72O4 (640.543)


   

4-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid

4-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid

C41H68O5 (640.5066)


   

(1-dodecanoyloxy-3-hydroxypropan-2-yl) (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

(1-dodecanoyloxy-3-hydroxypropan-2-yl) (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C41H68O5 (640.5066)


   

(1-hydroxy-3-tetradecanoyloxypropan-2-yl) (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

(1-hydroxy-3-tetradecanoyloxypropan-2-yl) (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C41H68O5 (640.5066)


   

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C41H68O5 (640.5066)


   

[17-[(E)-5-ethyl-6-methylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (5E,7Z,9Z,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[17-[(E)-5-ethyl-6-methylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (5E,7Z,9Z,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C45H68O2 (640.5219)


   

(1-decanoyloxy-3-hydroxypropan-2-yl) (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

(1-decanoyloxy-3-hydroxypropan-2-yl) (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

C41H68O5 (640.5066)


   

[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-octanoyloxypropyl] octanoate

[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-octanoyloxypropyl] octanoate

C41H68O5 (640.5066)


   

(2-octanoyloxy-3-octoxypropyl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

(2-octanoyloxy-3-octoxypropyl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C41H68O5 (640.5066)


   
   
   

Fahfa 24:4/18:1

Fahfa 24:4/18:1

C42H72O4 (640.543)


   

Fahfa 26:2/16:3

Fahfa 26:2/16:3

C42H72O4 (640.543)


   

Fahfa 20:2/22:3

Fahfa 20:2/22:3

C42H72O4 (640.543)


   

Fahfa 20:1/22:4

Fahfa 20:1/22:4

C42H72O4 (640.543)


   

Fahfa 18:4/24:1

Fahfa 18:4/24:1

C42H72O4 (640.543)


   

Fahfa 24:2/18:3

Fahfa 24:2/18:3

C42H72O4 (640.543)


   

Fahfa 16:1/26:4

Fahfa 16:1/26:4

C42H72O4 (640.543)


   

Fahfa 18:5/24:0

Fahfa 18:5/24:0

C42H72O4 (640.543)


   

Fahfa 20:0/22:5

Fahfa 20:0/22:5

C42H72O4 (640.543)


   

Fahfa 22:4/20:1

Fahfa 22:4/20:1

C42H72O4 (640.543)


   

Fahfa 18:3/24:2

Fahfa 18:3/24:2

C42H72O4 (640.543)


   

Fahfa 16:4/26:1

Fahfa 16:4/26:1

C42H72O4 (640.543)


   

Fahfa 18:1/24:4

Fahfa 18:1/24:4

C42H72O4 (640.543)


   

Fahfa 22:1/20:4

Fahfa 22:1/20:4

C42H72O4 (640.543)


   

Fahfa 20:4/22:1

Fahfa 20:4/22:1

C42H72O4 (640.543)


   

Fahfa 22:2/20:3

Fahfa 22:2/20:3

C42H72O4 (640.543)


   

Fahfa 26:4/16:1

Fahfa 26:4/16:1

C42H72O4 (640.543)


   

Fahfa 20:3/22:2

Fahfa 20:3/22:2

C42H72O4 (640.543)


   

Fahfa 22:3/20:2

Fahfa 22:3/20:2

C42H72O4 (640.543)


   

Fahfa 16:3/26:2

Fahfa 16:3/26:2

C42H72O4 (640.543)


   

[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (Z)-icos-11-enoate

[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (Z)-icos-11-enoate

C41H68O5 (640.5066)


   

[1-hydroxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-hydroxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H68O5 (640.5066)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C41H68O5 (640.5066)


   

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C41H68O5 (640.5066)


   

[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

C41H68O5 (640.5066)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropyl] (13Z,16Z)-docosa-13,16-dienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropyl] (13Z,16Z)-docosa-13,16-dienoate

C41H68O5 (640.5066)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C41H68O5 (640.5066)


   

[1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H68O5 (640.5066)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C41H68O5 (640.5066)


   

(1-hydroxy-3-octanoyloxypropan-2-yl) (12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoate

(1-hydroxy-3-octanoyloxypropan-2-yl) (12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoate

C41H68O5 (640.5066)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

18-Dpahaa

18-Dpahaa

C42H72O4 (640.543)


   

11-Dpahaa

11-Dpahaa

C42H72O4 (640.543)


   

19-Epahba

19-Epahba

C42H72O4 (640.543)


   

12-Tpahsa

12-Tpahsa

C42H72O4 (640.543)


   

14-Dpahaa

14-Dpahaa

C42H72O4 (640.543)


   

14-Epahba

14-Epahba

C42H72O4 (640.543)


   

17-Epahba

17-Epahba

C42H72O4 (640.543)


   

10-Tpahsa

10-Tpahsa

C42H72O4 (640.543)


   

14-Tpahsa

14-Tpahsa

C42H72O4 (640.543)


   

11-Epahba

11-Epahba

C42H72O4 (640.543)


   

15-Dpahaa

15-Dpahaa

C42H72O4 (640.543)


   

12-Dpahaa

12-Dpahaa

C42H72O4 (640.543)


   

12-Epahba

12-Epahba

C42H72O4 (640.543)


   

15-Tpahsa

15-Tpahsa

C42H72O4 (640.543)


   

19-Dpahaa

19-Dpahaa

C42H72O4 (640.543)


   

15-Epahba

15-Epahba

C42H72O4 (640.543)


   

13-Epahba

13-Epahba

C42H72O4 (640.543)


   

16-Epahba

16-Epahba

C42H72O4 (640.543)


   

20-Epahba

20-Epahba

C42H72O4 (640.543)


   

13-Dpahaa

13-Dpahaa

C42H72O4 (640.543)


   

18-Epahba

18-Epahba

C42H72O4 (640.543)


   

10-Dpahaa

10-Dpahaa

C42H72O4 (640.543)


   

21-Epahba

21-Epahba

C42H72O4 (640.543)


   

13-Tpahsa

13-Tpahsa

C42H72O4 (640.543)


   

16-Tpahsa

16-Tpahsa

C42H72O4 (640.543)


   

10-Epahba

10-Epahba

C42H72O4 (640.543)


   

17-Dpahaa

17-Dpahaa

C42H72O4 (640.543)


   

16-Dpahaa

16-Dpahaa

C42H72O4 (640.543)


   

11-Tpahsa

11-Tpahsa

C42H72O4 (640.543)


   

17-Tpahsa

17-Tpahsa

C42H72O4 (640.543)


   

1-O-(1-Oxodocosa-4,7,10,13,16,19-hexenyl)-2-O-palmitoyl-L-glycerol

1-O-(1-Oxodocosa-4,7,10,13,16,19-hexenyl)-2-O-palmitoyl-L-glycerol

C41H68O5 (640.5066)


   

1-O-Palmitoyl-2-O-(1-oxodocosa-4,7,10,13,16,19-hexenyl)-L-glycerol

1-O-Palmitoyl-2-O-(1-oxodocosa-4,7,10,13,16,19-hexenyl)-L-glycerol

C41H68O5 (640.5066)


   

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C41H68O5 (640.5066)


   

[(2S)-3-hydroxy-2-[(E)-octadec-11-enoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-3-hydroxy-2-[(E)-octadec-11-enoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H68O5 (640.5066)


   

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-pentadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-pentadecanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[(2S)-3-hydroxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-3-hydroxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H68O5 (640.5066)


   

[1-carboxy-3-[3-[(E)-tetradec-9-enoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-tetradec-9-enoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[2-decanoyloxy-3-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-decanoyloxy-3-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (13E,16E,19E)-docosa-13,16,19-trienoate

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (13E,16E,19E)-docosa-13,16,19-trienoate

C41H68O5 (640.5066)


   

[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoate

[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoate

C41H68O5 (640.5066)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (E)-docos-11-enoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (E)-docos-11-enoate

C41H68O5 (640.5066)


   

[(2S)-3-hydroxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-3-hydroxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H68O5 (640.5066)


   

[1-carboxy-3-[3-tetradecanoyloxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-tetradecanoyloxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[(2S)-1-hydroxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-1-hydroxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H68O5 (640.5066)


   

[1-carboxy-3-[3-dodecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-dodecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-pentadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-pentadecanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-heptadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-heptadecanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[3-hexadecanoyloxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-hexadecanoyloxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[2-dodecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-dodecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[2-[(E)-hexadec-7-enoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-hexadec-7-enoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-heptadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-heptadecanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[3-[(E)-hexadec-7-enoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-hexadec-7-enoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C41H68O5 (640.5066)


   

[1-carboxy-3-[3-decanoyloxy-2-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-decanoyloxy-2-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

C41H68O5 (640.5066)


   

[1-carboxy-3-[2-tetradecanoyloxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-tetradecanoyloxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[2-[(E)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (14E,16E)-docosa-14,16-dienoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (14E,16E)-docosa-14,16-dienoate

C41H68O5 (640.5066)


   

[(2S)-1-hydroxy-3-[(E)-octadec-11-enoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-1-hydroxy-3-[(E)-octadec-11-enoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H68O5 (640.5066)


   

[1-carboxy-3-[2-hexadecanoyloxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-hexadecanoyloxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[(2S)-1-hydroxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-1-hydroxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H68O5 (640.5066)


   

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C41H68O5 (640.5066)


   

[1-carboxy-3-[2-[(Z)-docos-13-enoyl]oxy-3-pentanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(Z)-docos-13-enoyl]oxy-3-pentanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[2-[(Z)-henicos-11-enoyl]oxy-3-hexanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(Z)-henicos-11-enoyl]oxy-3-hexanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[3-decanoyloxy-2-[(Z)-heptadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-decanoyloxy-2-[(Z)-heptadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[3-propanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-propanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[3-dodecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-dodecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[3-nonanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-nonanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[2-[(Z)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(Z)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[3-tetradecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-tetradecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[2-[(Z)-nonadec-9-enoyl]oxy-3-octanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(Z)-nonadec-9-enoyl]oxy-3-octanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[2-[(Z)-hexadec-9-enoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(Z)-hexadec-9-enoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

[1-carboxy-3-[3-heptanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-heptanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H70NO7+ (640.5152)


   

2-[carboxy-[3-decanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-decanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C36H66NO8+ (640.4788)


   

2-[2,3-bis[[(Z)-tridec-9-enoyl]oxy]propoxy-carboxymethoxy]ethyl-trimethylazanium

2-[2,3-bis[[(Z)-tridec-9-enoyl]oxy]propoxy-carboxymethoxy]ethyl-trimethylazanium

C36H66NO8+ (640.4788)


   

2-[carboxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C36H66NO8+ (640.4788)


   

2-[carboxy-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-nonanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-nonanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C36H66NO8+ (640.4788)


   

1-palmitoyl-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl]-sn-glycerol

1-palmitoyl-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl]-sn-glycerol

C41H68O5 (640.5066)


A 1,2-diacyl-sn-glycerol in which the acyl groups at positions 1 and 2 are specified as palmitoyl and (4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl respectively.

   

DG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

DG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

C41H68O5 (640.5066)


   

DG(18:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

DG(18:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

C41H68O5 (640.5066)


   

DG(16:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

DG(16:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

C41H68O5 (640.5066)


   

DG(18:3(6Z,9Z,12Z)/20:3(8Z,11Z,14Z)/0:0)

DG(18:3(6Z,9Z,12Z)/20:3(8Z,11Z,14Z)/0:0)

C41H68O5 (640.5066)


   

DG(18:3(9Z,12Z,15Z)/20:3(8Z,11Z,14Z)/0:0)

DG(18:3(9Z,12Z,15Z)/20:3(8Z,11Z,14Z)/0:0)

C41H68O5 (640.5066)


   

DG(18:4(6Z,9Z,12Z,15Z)/20:2(11Z,14Z)/0:0)

DG(18:4(6Z,9Z,12Z,15Z)/20:2(11Z,14Z)/0:0)

C41H68O5 (640.5066)


   

1-alpha-linolenoyl-2-[(5Z,8Z,11Z)-icosatrienoyl]-sn-glycerol

1-alpha-linolenoyl-2-[(5Z,8Z,11Z)-icosatrienoyl]-sn-glycerol

C41H68O5 (640.5066)


A 1,2-diacyl-sn-glycerol in which the acyl groups positions 1 and 2 are specified as alpha-linolenoyl and (5Z,8Z,11Z)-icosatrienoyl respectively.

   

DG(18:3(6Z,9Z,12Z)/20:3(5Z,8Z,11Z)/0:0)

DG(18:3(6Z,9Z,12Z)/20:3(5Z,8Z,11Z)/0:0)

C41H68O5 (640.5066)


   

DG(20:3(5Z,8Z,11Z)/18:3(6Z,9Z,12Z)/0:0)

DG(20:3(5Z,8Z,11Z)/18:3(6Z,9Z,12Z)/0:0)

C41H68O5 (640.5066)


   

DG(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

DG(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

C41H68O5 (640.5066)


   

DG(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

DG(18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

C41H68O5 (640.5066)


   

DG(18:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

DG(18:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

C41H68O5 (640.5066)


   

DG(20:2(11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

DG(20:2(11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

C41H68O5 (640.5066)


   

DG(20:3(5Z,8Z,11Z)/18:3(9Z,12Z,15Z)/0:0)

DG(20:3(5Z,8Z,11Z)/18:3(9Z,12Z,15Z)/0:0)

C41H68O5 (640.5066)


   

DG(20:3(8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0)

DG(20:3(8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0)

C41H68O5 (640.5066)


   

DG(20:3(8Z,11Z,14Z)/18:3(9Z,12Z,15Z)/0:0)

DG(20:3(8Z,11Z,14Z)/18:3(9Z,12Z,15Z)/0:0)

C41H68O5 (640.5066)


   

DG(20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)/0:0)

DG(20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)/0:0)

C41H68O5 (640.5066)


   

DG(20:4(8Z,11Z,14Z,17Z)/18:2(9Z,12Z)/0:0)

DG(20:4(8Z,11Z,14Z,17Z)/18:2(9Z,12Z)/0:0)

C41H68O5 (640.5066)


   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(11Z)/0:0)

DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(11Z)/0:0)

C41H68O5 (640.5066)


   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(9Z)/0:0)

DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(9Z)/0:0)

C41H68O5 (640.5066)


   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/16:1(9Z)/0:0)

DG(22:5(4Z,7Z,10Z,13Z,16Z)/16:1(9Z)/0:0)

C41H68O5 (640.5066)


   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0)

DG(22:5(7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0)

C41H68O5 (640.5066)


   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0/0:0)

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0/0:0)

C41H68O5 (640.5066)


   

1-Palmitoleoyl-3-osbondoyl-sn-glycerol

1-Palmitoleoyl-3-osbondoyl-sn-glycerol

C41H68O5 (640.5066)


   

1-Palmitoleoyl-3-docosapentaenoyl-sn-glycerol

1-Palmitoleoyl-3-docosapentaenoyl-sn-glycerol

C41H68O5 (640.5066)


   

1-Vaccenoyl-3-eicosapentaenoyl-sn-glycerol

1-Vaccenoyl-3-eicosapentaenoyl-sn-glycerol

C41H68O5 (640.5066)


   

1-Oleoyl-3-eicosapentaenoyl-sn-glycerol

1-Oleoyl-3-eicosapentaenoyl-sn-glycerol

C41H68O5 (640.5066)


   

1-Meadoyl-3-g-linolenoyl-sn-glycerol

1-Meadoyl-3-g-linolenoyl-sn-glycerol

C41H68O5 (640.5066)


   

1-Meadoyl-3-a-linolenoyl-sn-glycerol

1-Meadoyl-3-a-linolenoyl-sn-glycerol

C41H68O5 (640.5066)


   

1-g-Linolenoyl-3-homo-g-linolenoyl-sn-glycerol

1-g-Linolenoyl-3-homo-g-linolenoyl-sn-glycerol

C41H68O5 (640.5066)


   

1-Eicosadienoyl-3-stearidonoyl-sn-glycerol

1-Eicosadienoyl-3-stearidonoyl-sn-glycerol

C41H68O5 (640.5066)


   

1-Homo-g-linolenoyl-3-a-linolenoyl-sn-glycerol

1-Homo-g-linolenoyl-3-a-linolenoyl-sn-glycerol

C41H68O5 (640.5066)


   

1-Palmitoyl-3-docosahexaenoyl-sn-glycerol

1-Palmitoyl-3-docosahexaenoyl-sn-glycerol

C41H68O5 (640.5066)


   

diacylglycerol 38:6

diacylglycerol 38:6

C41H68O5 (640.5066)


A diglyceride in which the two acyl groups contain a total of 38 carbons and 6 double bonds.

   

diacylglycerol (16:0/22:6/0:0)

diacylglycerol (16:0/22:6/0:0)

C41H68O5 (640.5066)


A 1,2-diglyceride in which the fatty acyl groups at positions 1 and 2 are specified as C16:0 and C22:6 respectively.

   

1-alpha-linolenoyl-2-[(8Z,11Z,14Z)-icosatrienoyl]-sn-glycerol

1-alpha-linolenoyl-2-[(8Z,11Z,14Z)-icosatrienoyl]-sn-glycerol

C41H68O5 (640.5066)


A 1,2-diacyl-sn-glycerol in which the acyl groups positions 1 and 2 are specified as alpha-linolenoyl and (8Z,11Z,14Z)-icosatrienoyl respectively.

   

TG(38:6)

TG(12:1(1)_6:0_20:5)

C41H68O5 (640.5066)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   

FAHFA 16:0/O-26:5

FAHFA 16:0/O-26:5

C42H72O4 (640.543)


   

FAHFA 16:1/O-26:4

FAHFA 16:1/O-26:4

C42H72O4 (640.543)


   

FAHFA 16:2/O-26:3

FAHFA 16:2/O-26:3

C42H72O4 (640.543)


   

FAHFA 16:3/O-26:2

FAHFA 16:3/O-26:2

C42H72O4 (640.543)


   

FAHFA 16:4/O-26:1

FAHFA 16:4/O-26:1

C42H72O4 (640.543)


   

FAHFA 16:5/O-26:0

FAHFA 16:5/O-26:0

C42H72O4 (640.543)


   

FAHFA 17:0/O-25:5

FAHFA 17:0/O-25:5

C42H72O4 (640.543)


   

FAHFA 17:1/O-25:4

FAHFA 17:1/O-25:4

C42H72O4 (640.543)


   

FAHFA 17:2/O-25:3

FAHFA 17:2/O-25:3

C42H72O4 (640.543)


   

FAHFA 17:3/O-25:2

FAHFA 17:3/O-25:2

C42H72O4 (640.543)


   

FAHFA 17:4/O-25:1

FAHFA 17:4/O-25:1

C42H72O4 (640.543)


   

FAHFA 17:5/O-25:0

FAHFA 17:5/O-25:0

C42H72O4 (640.543)


   

FAHFA 18:0/O-24:5

FAHFA 18:0/O-24:5

C42H72O4 (640.543)


   

FAHFA 18:1/O-24:4

FAHFA 18:1/O-24:4

C42H72O4 (640.543)


   

FAHFA 18:2/O-24:3

FAHFA 18:2/O-24:3

C42H72O4 (640.543)


   

FAHFA 18:3/O-24:2

FAHFA 18:3/O-24:2

C42H72O4 (640.543)


   

FAHFA 18:4/O-24:1

FAHFA 18:4/O-24:1

C42H72O4 (640.543)


   

FAHFA 18:5/O-24:0

FAHFA 18:5/O-24:0

C42H72O4 (640.543)


   

FAHFA 19:0/O-23:5

FAHFA 19:0/O-23:5

C42H72O4 (640.543)


   

FAHFA 19:1/O-23:4

FAHFA 19:1/O-23:4

C42H72O4 (640.543)


   

FAHFA 19:2/O-23:3

FAHFA 19:2/O-23:3

C42H72O4 (640.543)


   

FAHFA 19:3/O-23:2

FAHFA 19:3/O-23:2

C42H72O4 (640.543)


   

FAHFA 19:4/O-23:1

FAHFA 19:4/O-23:1

C42H72O4 (640.543)


   

FAHFA 19:5/O-23:0

FAHFA 19:5/O-23:0

C42H72O4 (640.543)


   

FAHFA 20:0/O-22:5

FAHFA 20:0/O-22:5

C42H72O4 (640.543)


   

FAHFA 20:1/O-22:4

FAHFA 20:1/O-22:4

C42H72O4 (640.543)


   

FAHFA 20:2/O-22:3

FAHFA 20:2/O-22:3

C42H72O4 (640.543)


   

FAHFA 20:3/O-22:2

FAHFA 20:3/O-22:2

C42H72O4 (640.543)


   

FAHFA 20:4/O-22:1

FAHFA 20:4/O-22:1

C42H72O4 (640.543)


   

FAHFA 20:5(5Z,8Z,11Z,14Z,17Z)/2O-22:0

FAHFA 20:5(5Z,8Z,11Z,14Z,17Z)/2O-22:0

C42H72O4 (640.543)


   

FAHFA 20:5/O-22:0

FAHFA 20:5/O-22:0

C42H72O4 (640.543)


   

FAHFA 21:0/O-21:5

FAHFA 21:0/O-21:5

C42H72O4 (640.543)


   

FAHFA 21:1/O-21:4

FAHFA 21:1/O-21:4

C42H72O4 (640.543)


   

FAHFA 21:2/O-21:3

FAHFA 21:2/O-21:3

C42H72O4 (640.543)


   

FAHFA 21:3/O-21:2

FAHFA 21:3/O-21:2

C42H72O4 (640.543)


   

FAHFA 21:4/O-21:1

FAHFA 21:4/O-21:1

C42H72O4 (640.543)


   

FAHFA 21:5/O-21:0

FAHFA 21:5/O-21:0

C42H72O4 (640.543)


   

FAHFA 22:0/O-20:5

FAHFA 22:0/O-20:5

C42H72O4 (640.543)


   

FAHFA 22:1/O-20:4

FAHFA 22:1/O-20:4

C42H72O4 (640.543)


   

FAHFA 22:2/O-20:3

FAHFA 22:2/O-20:3

C42H72O4 (640.543)


   

FAHFA 22:3/O-20:2

FAHFA 22:3/O-20:2

C42H72O4 (640.543)


   

FAHFA 22:4/O-20:1

FAHFA 22:4/O-20:1

C42H72O4 (640.543)


   

FAHFA 22:5/O-20:0

FAHFA 22:5/O-20:0

C42H72O4 (640.543)


   

FAHFA 23:0/O-19:5

FAHFA 23:0/O-19:5

C42H72O4 (640.543)


   

FAHFA 23:1/O-19:4

FAHFA 23:1/O-19:4

C42H72O4 (640.543)


   

FAHFA 23:2/O-19:3

FAHFA 23:2/O-19:3

C42H72O4 (640.543)


   

FAHFA 23:3/O-19:2

FAHFA 23:3/O-19:2

C42H72O4 (640.543)


   

FAHFA 23:4/O-19:1

FAHFA 23:4/O-19:1

C42H72O4 (640.543)


   

FAHFA 23:5/O-19:0

FAHFA 23:5/O-19:0

C42H72O4 (640.543)


   

FAHFA 24:0/O-18:5

FAHFA 24:0/O-18:5

C42H72O4 (640.543)


   

FAHFA 24:1/O-18:4

FAHFA 24:1/O-18:4

C42H72O4 (640.543)


   

FAHFA 24:2/O-18:3

FAHFA 24:2/O-18:3

C42H72O4 (640.543)


   

FAHFA 24:3/O-18:2

FAHFA 24:3/O-18:2

C42H72O4 (640.543)


   

FAHFA 24:4/O-18:1

FAHFA 24:4/O-18:1

C42H72O4 (640.543)


   

FAHFA 24:5/O-18:0

FAHFA 24:5/O-18:0

C42H72O4 (640.543)


   

FAHFA 25:0/O-17:5

FAHFA 25:0/O-17:5

C42H72O4 (640.543)


   

FAHFA 25:1/O-17:4

FAHFA 25:1/O-17:4

C42H72O4 (640.543)


   

FAHFA 25:2/O-17:3

FAHFA 25:2/O-17:3

C42H72O4 (640.543)


   

FAHFA 25:3/O-17:2

FAHFA 25:3/O-17:2

C42H72O4 (640.543)


   

FAHFA 25:4/O-17:1

FAHFA 25:4/O-17:1

C42H72O4 (640.543)


   

FAHFA 25:5/O-17:0

FAHFA 25:5/O-17:0

C42H72O4 (640.543)


   

FAHFA 26:0/O-16:5

FAHFA 26:0/O-16:5

C42H72O4 (640.543)


   

FAHFA 26:1/O-16:4

FAHFA 26:1/O-16:4

C42H72O4 (640.543)


   

FAHFA 26:2/O-16:3

FAHFA 26:2/O-16:3

C42H72O4 (640.543)


   

FAHFA 26:3/O-16:2

FAHFA 26:3/O-16:2

C42H72O4 (640.543)


   

FAHFA 26:4/O-16:1

FAHFA 26:4/O-16:1

C42H72O4 (640.543)


   

FAHFA 26:5/O-16:0

FAHFA 26:5/O-16:0

C42H72O4 (640.543)


   

FAHFA 42:5;O

FAHFA 42:5;O

C42H72O4 (640.543)


   

1,2-DG 38:6

1,2-DG 38:6

C41H68O5 (640.5066)


   

1,3-DG 38:6

1,3-DG 38:6

C41H68O5 (640.5066)


   

DG 16:0_22:6

DG 16:0_22:6

C41H68O5 (640.5066)


   

DG 16:0/22:6/0:0

DG 16:0/22:6/0:0

C41H68O5 (640.5066)


   

DG 16:1_22:5

DG 16:1_22:5

C41H68O5 (640.5066)


   

DG 18:1_20:5

DG 18:1_20:5

C41H68O5 (640.5066)


   

DG 18:2_20:4

DG 18:2_20:4

C41H68O5 (640.5066)


   

DG 18:2/20:4/0:0

DG 18:2/20:4/0:0

C41H68O5 (640.5066)


   

DG 18:3_20:3

DG 18:3_20:3

C41H68O5 (640.5066)


   

DG 18:4_20:2

DG 18:4_20:2

C41H68O5 (640.5066)


   
   

(3s,4r,5s)-3-{9-[(5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]nonyl}-4-hydroxy-5-methyloxolan-2-one

(3s,4r,5s)-3-{9-[(5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]nonyl}-4-hydroxy-5-methyloxolan-2-one

C37H68O8 (640.4914)


   

(5s)-3-[(13r,14r,17r)-17-[(2r,5r)-5-[(1s,5s)-1,5-dihydroxyundecyl]oxolan-2-yl]-13,14,17-trihydroxyheptadecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(13r,14r,17r)-17-[(2r,5r)-5-[(1s,5s)-1,5-dihydroxyundecyl]oxolan-2-yl]-13,14,17-trihydroxyheptadecyl]-5-methyl-5h-furan-2-one

C37H68O8 (640.4914)


   

3-{17-[5-(1,5-dihydroxyundecyl)oxolan-2-yl]-13,14,17-trihydroxyheptadecyl}-5-methyl-5h-furan-2-one

3-{17-[5-(1,5-dihydroxyundecyl)oxolan-2-yl]-13,14,17-trihydroxyheptadecyl}-5-methyl-5h-furan-2-one

C37H68O8 (640.4914)


   

3-[9-(5-{1,4-dihydroxy-4-[5-(1-hydroxyundecyl)oxolan-2-yl]butyl}oxolan-2-yl)nonyl]-4-hydroxy-5-methyloxolan-2-one

3-[9-(5-{1,4-dihydroxy-4-[5-(1-hydroxyundecyl)oxolan-2-yl]butyl}oxolan-2-yl)nonyl]-4-hydroxy-5-methyloxolan-2-one

C37H68O8 (640.4914)


   

(3s,5z,14s,21z,27z,42z)-pentatetraconta-5,21,27,42-tetraen-1,12,15,44-tetrayne-3,14-diol

(3s,5z,14s,21z,27z,42z)-pentatetraconta-5,21,27,42-tetraen-1,12,15,44-tetrayne-3,14-diol

C45H68O2 (640.5219)


   

(3s,4r,5s)-3-{9-[(2r,5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]nonyl}-4-hydroxy-5-methyloxolan-2-one

(3s,4r,5s)-3-{9-[(2r,5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]nonyl}-4-hydroxy-5-methyloxolan-2-one

C37H68O8 (640.4914)


   

(3s,4ar,6ar,6br,8s,8as,12s,12ar,12br,14ar,14br)-8-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-yl dodecanoate

(3s,4ar,6ar,6br,8s,8as,12s,12ar,12br,14ar,14br)-8-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-yl dodecanoate

C42H72O4 (640.543)


   

(1r,3as,4s,5ar,5br,7ar,9s,11ar,11br,13as,13br)-4-hydroxy-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl dodecanoate

(1r,3as,4s,5ar,5br,7ar,9s,11ar,11br,13as,13br)-4-hydroxy-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl dodecanoate

C42H72O4 (640.543)


   

(5s)-5-methyl-3-{9-[(2s,5r)-5-[(1r,4s,5s,8s,9s)-1,4,5,8,9-pentahydroxynonadecyl]oxolan-2-yl]nonyl}-5h-furan-2-one

(5s)-5-methyl-3-{9-[(2s,5r)-5-[(1r,4s,5s,8s,9s)-1,4,5,8,9-pentahydroxynonadecyl]oxolan-2-yl]nonyl}-5h-furan-2-one

C37H68O8 (640.4914)


   

(5s)-5-methyl-3-{9-[(2r,5r)-5-[(1r,4s,5r,8s,9r)-1,4,5,8,9-pentahydroxynonadecyl]oxolan-2-yl]nonyl}-5h-furan-2-one

(5s)-5-methyl-3-{9-[(2r,5r)-5-[(1r,4s,5r,8s,9r)-1,4,5,8,9-pentahydroxynonadecyl]oxolan-2-yl]nonyl}-5h-furan-2-one

C37H68O8 (640.4914)


   

tetratriacontyl 2,2,3,3,3-pentafluoropropanoate

tetratriacontyl 2,2,3,3,3-pentafluoropropanoate

C37H69F5O2 (640.5217)


   

8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl dodecanoate

8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl dodecanoate

C42H72O4 (640.543)


   

5-methyl-3-{9-[5-(1,4,5,8,9-pentahydroxynonadecyl)oxolan-2-yl]nonyl}-5h-furan-2-one

5-methyl-3-{9-[5-(1,4,5,8,9-pentahydroxynonadecyl)oxolan-2-yl]nonyl}-5h-furan-2-one

C37H68O8 (640.4914)


   

(5r)-5-methyl-3-[(2s,6s,11s,17r)-2,6,11,17-tetrahydroxy-17-[(2s,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]heptadecyl]-5h-furan-2-one

(5r)-5-methyl-3-[(2s,6s,11s,17r)-2,6,11,17-tetrahydroxy-17-[(2s,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]heptadecyl]-5h-furan-2-one

C37H68O8 (640.4914)


   

(3s,4ar,6ar,6br,8s,8as,9ar,10as,11s,11as,11br,13ar,13br)-8-hydroxy-4,4,6a,6b,8a,10a,11,13b-octamethyl-hexadecahydropiceno[2,3-b]oxiren-3-yl dodecanoate

(3s,4ar,6ar,6br,8s,8as,9ar,10as,11s,11as,11br,13ar,13br)-8-hydroxy-4,4,6a,6b,8a,10a,11,13b-octamethyl-hexadecahydropiceno[2,3-b]oxiren-3-yl dodecanoate

C42H72O4 (640.543)


   

(3s,4ar,6ar,6bs,8s,8as,14ar,14br)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-yl dodecanoate

(3s,4ar,6ar,6bs,8s,8as,14ar,14br)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-yl dodecanoate

C42H72O4 (640.543)


   

5-methyl-3-{2,6,11,17-tetrahydroxy-17-[5-(1-hydroxyundecyl)oxolan-2-yl]heptadecyl}-5h-furan-2-one

5-methyl-3-{2,6,11,17-tetrahydroxy-17-[5-(1-hydroxyundecyl)oxolan-2-yl]heptadecyl}-5h-furan-2-one

C37H68O8 (640.4914)


   

8-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-yl dodecanoate

8-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-yl dodecanoate

C42H72O4 (640.543)


   

(5s)-5-methyl-3-{9-[(2r,5r)-5-[(1s,4r,5s,8r,9s)-1,4,5,8,9-pentahydroxynonadecyl]oxolan-2-yl]nonyl}-5h-furan-2-one

(5s)-5-methyl-3-{9-[(2r,5r)-5-[(1s,4r,5s,8r,9s)-1,4,5,8,9-pentahydroxynonadecyl]oxolan-2-yl]nonyl}-5h-furan-2-one

C37H68O8 (640.4914)


   

8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-yl dodecanoate

8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,13,14,14a-tetradecahydropicen-3-yl dodecanoate

C42H72O4 (640.543)


   

(3s,4r,5r)-3-{9-[(2s,5s)-5-[(1s,4s)-1,4-dihydroxy-4-[(2s,5s)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]nonyl}-4-hydroxy-5-methyloxolan-2-one

(3s,4r,5r)-3-{9-[(2s,5s)-5-[(1s,4s)-1,4-dihydroxy-4-[(2s,5s)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]nonyl}-4-hydroxy-5-methyloxolan-2-one

C37H68O8 (640.4914)


   

(2s)-3-hydroxy-2-[(1-hydroxy-2-{[(3r)-1-hydroxy-3-[(13-methyltetradecanoyl)oxy]hexadecylidene]amino}ethylidene)amino]propanoic acid

(2s)-3-hydroxy-2-[(1-hydroxy-2-{[(3r)-1-hydroxy-3-[(13-methyltetradecanoyl)oxy]hexadecylidene]amino}ethylidene)amino]propanoic acid

C36H68N2O7 (640.5026)


   

3-hydroxy-2-{[1-hydroxy-2-({1-hydroxy-14-methyl-3-[(13-methyltetradecanoyl)oxy]pentadecylidene}amino)ethylidene]amino}propanoic acid

3-hydroxy-2-{[1-hydroxy-2-({1-hydroxy-14-methyl-3-[(13-methyltetradecanoyl)oxy]pentadecylidene}amino)ethylidene]amino}propanoic acid

C36H68N2O7 (640.5026)


   

8-hydroxy-4,4,6a,6b,8a,10a,11,13b-octamethyl-hexadecahydropiceno[2,3-b]oxiren-3-yl dodecanoate

8-hydroxy-4,4,6a,6b,8a,10a,11,13b-octamethyl-hexadecahydropiceno[2,3-b]oxiren-3-yl dodecanoate

C42H72O4 (640.543)


   

(5s)-5-methyl-3-{9-[(2s,5r)-5-[(1r,4r,5r,8r,9r)-1,4,5,8,9-pentahydroxynonadecyl]oxolan-2-yl]nonyl}-5h-furan-2-one

(5s)-5-methyl-3-{9-[(2s,5r)-5-[(1r,4r,5r,8r,9r)-1,4,5,8,9-pentahydroxynonadecyl]oxolan-2-yl]nonyl}-5h-furan-2-one

C37H68O8 (640.4914)


   

4-hydroxy-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl dodecanoate

4-hydroxy-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl dodecanoate

C42H72O4 (640.543)


   

pentatetraconta-4,21,27,42-tetraen-1,12,15,44-tetrayne-3,14-diol

pentatetraconta-4,21,27,42-tetraen-1,12,15,44-tetrayne-3,14-diol

C45H68O2 (640.5219)


   

(3s,4ar,6ar,6br,8s,8as,9s,12s,12ar,12br,14ar,14br)-8,9-dihydroxy-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-yl dodecanoate

(3s,4ar,6ar,6br,8s,8as,9s,12s,12ar,12br,14ar,14br)-8,9-dihydroxy-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-yl dodecanoate

C42H72O4 (640.543)


   

(3s,4ar,6ar,6bs,8s,8as,12as,14ar,14br)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl dodecanoate

(3s,4ar,6ar,6bs,8s,8as,12as,14ar,14br)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl dodecanoate

C42H72O4 (640.543)


   

(5s)-3-[(13r,14r,17r)-17-[(2r,5r)-5-[(1s)-1,5-dihydroxyundecyl]oxolan-2-yl]-13,14,17-trihydroxyheptadecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(13r,14r,17r)-17-[(2r,5r)-5-[(1s)-1,5-dihydroxyundecyl]oxolan-2-yl]-13,14,17-trihydroxyheptadecyl]-5-methyl-5h-furan-2-one

C37H68O8 (640.4914)


   

8,10-dihydroxy-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-yl dodecanoate

8,10-dihydroxy-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-yl dodecanoate

C42H72O4 (640.543)


   

8,9-dihydroxy-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-yl dodecanoate

8,9-dihydroxy-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-yl dodecanoate

C42H72O4 (640.543)


   

(3s,4ar,6ar,6br,8s,8as,10r,12s,12ar,12br,14ar,14br)-8,10-dihydroxy-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-yl dodecanoate

(3s,4ar,6ar,6br,8s,8as,10r,12s,12ar,12br,14ar,14br)-8,10-dihydroxy-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-yl dodecanoate

C42H72O4 (640.543)


   

(2s)-3-hydroxy-2-[(1-hydroxy-2-{[(3r)-1-hydroxy-14-methyl-3-[(13-methyltetradecanoyl)oxy]pentadecylidene]amino}ethylidene)amino]propanoic acid

(2s)-3-hydroxy-2-[(1-hydroxy-2-{[(3r)-1-hydroxy-14-methyl-3-[(13-methyltetradecanoyl)oxy]pentadecylidene]amino}ethylidene)amino]propanoic acid

C36H68N2O7 (640.5026)


   

(5r)-5-methyl-3-[(2s,6s,11r,17r)-2,6,11,17-tetrahydroxy-17-[(2s,5s)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]heptadecyl]-5h-furan-2-one

(5r)-5-methyl-3-[(2s,6s,11r,17r)-2,6,11,17-tetrahydroxy-17-[(2s,5s)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]heptadecyl]-5h-furan-2-one

C37H68O8 (640.4914)


   

(3r,4r,5s)-3-{9-[(2s,5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]nonyl}-4-hydroxy-5-methyloxolan-2-one

(3r,4r,5s)-3-{9-[(2s,5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]nonyl}-4-hydroxy-5-methyloxolan-2-one

C37H68O8 (640.4914)