Exact Mass: 638.4757

Exact Mass Matches: 638.4757

Found 500 metabolites which its exact mass value is equals to given mass value 638.4757, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Ginsenoside F1

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-[(2S)-6-methyl-2-[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,6,12-trihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]hept-5-en-2-yl]oxyoxane-3,4,5-triol

C36H62O9 (638.4394)


Ginsenoside F1 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite and an apoptosis inhibitor. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a ginsenoside, a tetracyclic triterpenoid, a 6alpha-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside F1 is a natural product found in Panax ginseng, Panax notoginseng, and Gynostemma yixingense with data available. Ginsenoside F1 is found in tea. Ginsenoside F1 is isolated from Panax species. Isolated from Panax subspecies Ginsenoside F1 is found in tea. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity.

   

Sanchinoside B2

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-oxidanyl-hept-5-en-2-yl]-3,12-bis(oxidanyl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]oxane-3,4,5-

C36H62O9 (638.4394)


(20S)-ginsenoside Rh1 is a tetracyclic triterpenoid that is (20S)-protopanaxadiol which is substituted by beta-D-glucoside at the 6alpha position. It has a role as a plant metabolite. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a tetracyclic triterpenoid, a ginsenoside, a 3beta-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside Rh1 is a natural product found in Panax vietnamensis, Panax ginseng, and other organisms with data available. A tetracyclic triterpenoid that is (20S)-protopanaxadiol which is substituted by beta-D-glucoside at the 6alpha position. Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β. Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β. Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β.

   

Bullatanocin

3-[9-(5-{1,4-dihydroxy-4-[5-(1-hydroxyundecyl)oxolan-2-yl]butyl}oxolan-2-yl)-2-hydroxynonyl]-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


12,15-cis-Sylvaticin is found in alcoholic beverages. 12,15-cis-Sylvaticin is isolated from Rollinia mucosa (biriba).

   

Mogroside IE

(2R,3R,4S,5S,6R)-2-(((3S,8S,9R,10R,11R,13R,14S,17R)-17-((2R,5R)-5,6-Dihydroxy-6-methylheptan-2-yl)-11-hydroxy-4,4,9,13,14-pentamethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C36H62O9 (638.4394)


Mogroside IE is a mogroside that is mogrol in which the hydroxyl hydrogen at position 3 has been replaced by a beta-D-glucosyl residue. It has a role as a plant metabolite. It is a mogroside, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a mogrol. A mogroside that is mogrol in which the hydroxyl hydrogen at position 3 has been replaced by a beta-D-glucosyl residue. Mogroside I-E1. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=88901-39-7 (retrieved 2024-08-14) (CAS RN: 88901-39-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Ginsenoside Rh1

(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


CID 12855917 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. Ginsenoside Rh1 is found in tea. Ginsenoside Rh1 is isolated from Panax species. Isolated from Panax subspecies Ginsenoside Rh1 is found in tea. (20R)-Ginsenoside Rh1, the R isomer of Ginsenoside Rh1 isolated from Panax Ginseng, inhibits the thrombin-induced conversion of fibrinogen to fibrin[1]. (20R)-Ginsenoside Rh1, the R isomer of Ginsenoside Rh1 isolated from Panax Ginseng, inhibits the thrombin-induced conversion of fibrinogen to fibrin[1]. Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β. Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β. Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β.

   

12,15-cis-Squamostatin A

3-[9-(5-{4-[5-(1,5-dihydroxyundecyl)oxolan-2-yl]-1,4-dihydroxybutyl}oxolan-2-yl)nonyl]-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


Constituent of the seeds of Annona atemoya (custard apple). Cytotoxic. 12,15-cis-Squamostatin A is found in fruits. Squamostatin B is found in fruits. Squamostatin B is a constituent of Annona squamosa (sugar apple).

   

27-Hydroxybullatacin

3-(13-{5-[5-(1,4-dihydroxyundecyl)oxolan-2-yl]oxolan-2-yl}-2,13-dihydroxytridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


27-Hydroxybullatacin is found in alcoholic beverages. 27-Hydroxybullatacin is a constituent of Annona glabra (pond apple) Constituent of Annona glabra (pond apple). 27-Hydroxybullatacin is found in alcoholic beverages and fruits.

   

20,23-cis-Bullatalicinone

5-[7-(5-{1,4-dihydroxy-4-[5-(1-hydroxyundecyl)oxolan-2-yl]butyl}oxolan-2-yl)heptyl]-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


20,23-cis-Bullatalicinone is found in alcoholic beverages. 20,23-cis-Bullatalicinone is a constituent of unripe fruit of Rollinia mucosa (biriba) Constituent of unripe fruit of Rollinia mucosa (biriba). 20,23-cis-Bullatalicinone is found in alcoholic beverages and fruits.

   

Mucocin

3-(9-{5-[4-(6-decyl-5-hydroxyoxan-2-yl)-1,4-dihydroxybutyl]oxolan-2-yl}-2-hydroxynonyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


Mucocin is found in alcoholic beverages. Mucocin is a constituent of the leaves of Rollinia mucosa (biriba) Constituent of the leaves of Rollinia mucosa (biriba). Mucocin is found in alcoholic beverages and fruits.

   

Annoglaucin

5-methyl-3-{2,8,13-trihydroxy-13-[5-(1-hydroxyundecyl)-[2,2-bioxolane]-5-yl]tridecyl}-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


Atemoyacin D is found in fruits. Atemoyacin D is a constituent of the seeds of Annona atemoya (custard apple) Constituent of the seeds of Annona purpurea (soncoya). Annoglaucin is found in beverages and fruits.

   

Sanchinoside B1

2-({5,16-dihydroxy-14-[(2E)-6-hydroxy-6-methylhept-2-en-2-yl]-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


Sanchinoside B1 is found in tea. Sanchinoside B1 is a constituent of Panax notoginseng (sanchi). Constituent of Panax notoginseng (sanchi). Sanchinoside B1 is found in tea.

   

Purpurenin

3-(13-{5-[5-(1,6-dihydroxyundecyl)oxolan-2-yl]oxolan-2-yl}-8,13-dihydroxytridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


Purpurenin is found in fruits. Purpurenin is a constituent of the seeds of Annona muricata (soursop) Constituent of the seeds of Annona muricata (soursop). Purpurenin is found in fruits.

   

Rollidecin A

3-(2-hydroxy-9-{5-[5-(1,4,5-trihydroxypentadecyl)oxolan-2-yl]oxolan-2-yl}nonyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


Bulladecin is found in fruits. Bulladecin is a constituent of the seeds of Annona atemoya (custard apple)

   

Rollitacin

3-(13-hydroxy-13-{5-[5-(1,5,6-trihydroxyundecyl)oxolan-2-yl]oxolan-2-yl}tridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


Purpurediolin is found in beverages. Purpurediolin is a constituent of the seeds of Annona purpurea (soncoya) Constituent of the seeds of Annona purpurea (soncoya). Purpurediolin is found in beverages and fruits.

   

Purpureacin 2

5-methyl-3-(2,10,13-trihydroxy-13-{5-[5-(1-hydroxyundecyl)oxolan-2-yl]oxolan-2-yl}tridecyl)-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


Purpureacin 2 is found in alcoholic beverages. Purpureacin 2 is isolated from Rollinia mucosa (biriba) and Annona purpurea. Isolated from Rollinia mucosa (biriba) and Annona purpurea. Purpureacin 2 is found in alcoholic beverages and fruits.

   

Rollimusin

3-(13-{5-[5-(1,5-dihydroxyundecyl)oxolan-2-yl]oxolan-2-yl}-8,13-dihydroxytridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


Rollimusin is found in alcoholic beverages. Rollimusin is a constituent of the unripe fruit of Rollinia mucosa (biriba) Constituent of the unripe fruit of Rollinia mucosa (biriba). Rollimusin is found in alcoholic beverages and fruits.

   

Glabracin A

3-(8-{5-[5-(5,6-dihydroxyhexadecyl)oxolan-2-yl]oxolan-2-yl}-2,8-dihydroxyoctyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


Glabracin B is found in alcoholic beverages. Glabracin B is a constituent of the leaves of Annona glabra (pond apple) Constituent of the leaves of Annona glabra (pond apple). Glabracin B is found in alcoholic beverages and fruits.

   

Annonin XIV

3-(13-hydroxy-13-{4-hydroxy-5-[3-hydroxy-5-(1-hydroxyundecyl)oxolan-2-yl]oxolan-2-yl}tridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


Annonin XIV is found in fruits. Annonin XIV is a constituent of Annona squamosa (sugar apple) Constituent of Annona squamosa (sugar apple). Annonin XIV is found in fruits.

   

Bullatetrocin

3-(13-hydroxy-13-{5-[5-(1,8,9-trihydroxyundecyl)oxolan-2-yl]oxolan-2-yl}tridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


Bullatetrocin is a constituent of Asimina triloba (pawpaw) Constituent of Asimina triloba (pawpaw).

   

Muricatin C

3-{13-[5-(1,6-dihydroxypentadecyl)oxolan-2-yl]-2,13-dihydroxy-8-oxotridecyl}-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


Muricatin C is found in fruits. Muricatin C is a constituent of Annona muricata (soursop) Constituent of Annona muricata (soursop). Muricatin C is found in fruits.

   

DG(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-[(9Z)-hexadec-9-enoyloxy]-3-hydroxypropan-2-yl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C41H66O5 (638.491)


DG(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:2(9Z,12Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

(2S)-1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propan-2-yl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H66O5 (638.491)


DG(18:2(9Z,12Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:2(9Z,12Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:3(6Z,9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propan-2-yl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C41H66O5 (638.491)


DG(18:3(6Z,9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(6Z,9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:3(6Z,9Z,12Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propan-2-yl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H66O5 (638.491)


DG(18:3(6Z,9Z,12Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(6Z,9Z,12Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:3(9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

(2S)-1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propan-2-yl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C41H66O5 (638.491)


DG(18:3(9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:3(9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

(2S)-1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propan-2-yl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H66O5 (638.491)


DG(18:3(9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:4(6Z,9Z,12Z,15Z)/20:3(5Z,8Z,11Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propan-2-yl (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C41H66O5 (638.491)


DG(18:4(6Z,9Z,12Z,15Z)/20:3(5Z,8Z,11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/20:3(5Z,8Z,11Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of mead acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the mead acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:4(6Z,9Z,12Z,15Z)/20:3(8Z,11Z,14Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propan-2-yl (8Z,11Z,14Z)-icosa-8,11,14-trienoate

C41H66O5 (638.491)


DG(18:4(6Z,9Z,12Z,15Z)/20:3(8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/20:3(8Z,11Z,14Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:4(6Z,9Z,12Z,15Z)/20:3(8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/20:3(8Z,11Z,14Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3(5Z,8Z,11Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C41H66O5 (638.491)


DG(20:3(5Z,8Z,11Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(5Z,8Z,11Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:3(5Z,8Z,11Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(5Z,8Z,11Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3(8Z,11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl (8Z,11Z,14Z)-icosa-8,11,14-trienoate

C41H66O5 (638.491)


DG(20:3(8Z,11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(8Z,11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:3(8Z,11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(8Z,11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:4(5Z,8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C41H66O5 (638.491)


DG(20:4(5Z,8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:4(5Z,8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:4(5Z,8Z,11Z,14Z)/18:3(9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C41H66O5 (638.491)


DG(20:4(5Z,8Z,11Z,14Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:4(8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H66O5 (638.491)


DG(20:4(8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:4(8Z,11Z,14Z,17Z)/18:3(9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H66O5 (638.491)


DG(20:4(8Z,11Z,14Z,17Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(8Z,11Z,14Z,17Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:2(9Z,12Z)/0:0)

(2S)-3-hydroxy-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H66O5 (638.491)


DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:2(9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:2(9Z,12Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the linoleic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0)

(2S)-2-[(9Z)-hexadec-9-enoyloxy]-3-hydroxypropyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C41H66O5 (638.491)


DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

9-Hydroxyasimicinone

5-(5,11-dihydroxy-11-{5-[5-(1-hydroxyundecyl)oxolan-2-yl]oxolan-2-yl}undecyl)-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


9-Hydroxyasimicinone is found in fruits. 9-Hydroxyasimicinone is a constituent of Annona squamosa (sugar apple). Constituent of Annona squamosa (sugar apple). 9-Hydroxyasimicinone is found in fruits.

   

DG(16:1n7/0:0/22:6n3)

(2R)-3-[(7Z)-Hexadec-7-enoyloxy]-2-hydroxypropyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid

C41H66O5 (638.491)


DG(16:1n7/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(16:1n7/0:0/22:6n3), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:3n9/0:0/18:4n3)

(2S)-2-Hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl (5Z,8Z,11Z)-icosa-5,8,11-trienoic acid

C41H66O5 (638.491)


DG(20:3n9/0:0/18:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:3n9/0:0/18:4n3), in particular, consists of one chain of mead acid at the C-1 position and one chain of stearidonic acid at the C-3 position. The mead acid moiety is derived from fish oils, liver and kidney, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:3n6/0:0/20:4n6)

(2R)-2-Hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoic acid

C41H66O5 (638.491)


DG(18:3n6/0:0/20:4n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n6/0:0/20:4n6), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of arachidonic acid at the C-3 position. The g-linolenic acid moiety is derived from animal fats, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:3n6/0:0/20:4n3)

(2S)-2-Hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoic acid

C41H66O5 (638.491)


DG(18:3n6/0:0/20:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n6/0:0/20:4n3), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-3 position. The g-linolenic acid moiety is derived from animal fats, while the eicosatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:3n6/0:0/18:4n3)

(2R)-2-Hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl (8Z,11Z,14Z)-icosa-8,11,14-trienoic acid

C41H66O5 (638.491)


DG(20:3n6/0:0/18:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:3n6/0:0/18:4n3), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-3 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:4n6/0:0/18:3n3)

(2S)-2-Hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (5Z,11Z,14Z)-icosa-5,8,11,14-tetraenoic acid

C41H66O5 (638.491)


DG(20:4n6/0:0/18:3n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:4n6/0:0/18:3n3), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of a-linolenic acid at the C-3 position. The arachidonic acid moiety is derived from animal fats and eggs, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:3n3/0:0/20:4n3)

(2R)-2-Hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoic acid

C41H66O5 (638.491)


DG(18:3n3/0:0/20:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n3/0:0/20:4n3), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-3 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the eicosatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(14:0/PGF2alpha/0:0)

(2S)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-hydroxypropyl tetradecanoic acid

C37H66O8 (638.4757)


DG(14:0/PGF2alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(14:0/PGF2alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGF2alpha/14:0/0:0)

(2S)-1-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-hydroxypropan-2-yl tetradecanoic acid

C37H66O8 (638.4757)


DG(PGF2alpha/14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGF2alpha/14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(14:0/0:0/PGF2alpha)

(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-hydroxypropyl tetradecanoic acid

C37H66O8 (638.4757)


DG(14:0/0:0/PGF2alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGF2alpha/0:0/14:0)

(2S)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-hydroxypropyl tetradecanoic acid

C37H66O8 (638.4757)


DG(PGF2alpha/0:0/14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(14:0/PGE1/0:0)

(2S)-3-Hydroxy-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl tetradecanoic acid

C37H66O8 (638.4757)


DG(14:0/PGE1/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(14:0/PGE1/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGE1/14:0/0:0)

(2S)-1-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propan-2-yl tetradecanoic acid

C37H66O8 (638.4757)


DG(PGE1/14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGE1/14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(14:0/0:0/PGE1)

(2R)-2-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl tetradecanoic acid

C37H66O8 (638.4757)


DG(14:0/0:0/PGE1) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGE1/0:0/14:0)

(2S)-2-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl tetradecanoic acid

C37H66O8 (638.4757)


DG(PGE1/0:0/14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(14:0/PGD1/0:0)

(2S)-3-Hydroxy-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl tetradecanoic acid

C37H66O8 (638.4757)


DG(14:0/PGD1/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(14:0/PGD1/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGD1/14:0/0:0)

(2S)-1-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propan-2-yl tetradecanoic acid

C37H66O8 (638.4757)


DG(PGD1/14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGD1/14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(14:0/0:0/PGD1)

(2R)-2-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl tetradecanoic acid

C37H66O8 (638.4757)


DG(14:0/0:0/PGD1) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGD1/0:0/14:0)

(2S)-2-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl tetradecanoic acid

C37H66O8 (638.4757)


DG(PGD1/0:0/14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(16:0/5-iso PGF2VI/0:0)

(2S)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-hydroxypropyl hexadecanoate

C37H66O8 (638.4757)


DG(16:0/5-iso PGF2VI/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(16:0/5-iso PGF2VI/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(5-iso PGF2VI/16:0/0:0)

(2S)-1-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-hydroxypropan-2-yl hexadecanoic acid

C37H66O8 (638.4757)


DG(5-iso PGF2VI/16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(5-iso PGF2VI/16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(16:0/0:0/5-iso PGF2VI)

(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-hydroxypropyl hexadecanoic acid

C37H66O8 (638.4757)


DG(16:0/0:0/5-iso PGF2VI) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(5-iso PGF2VI/0:0/16:0)

(2S)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-hydroxypropyl hexadecanoic acid

C37H66O8 (638.4757)


DG(5-iso PGF2VI/0:0/16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-14:0/PGF2alpha/0:0)

(2S)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-hydroxypropyl 12-methyltridecanoic acid

C37H66O8 (638.4757)


DG(i-14:0/PGF2alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-14:0/PGF2alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGF2alpha/i-14:0/0:0)

(2S)-1-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-hydroxypropan-2-yl 12-methyltridecanoic acid

C37H66O8 (638.4757)


DG(PGF2alpha/i-14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGF2alpha/i-14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-14:0/0:0/PGF2alpha)

(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-hydroxypropyl 12-methyltridecanoic acid

C37H66O8 (638.4757)


DG(i-14:0/0:0/PGF2alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGF2alpha/0:0/i-14:0)

(2S)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-hydroxypropyl 12-methyltridecanoic acid

C37H66O8 (638.4757)


DG(PGF2alpha/0:0/i-14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-14:0/PGE1/0:0)

(2S)-3-Hydroxy-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl 12-methyltridecanoic acid

C37H66O8 (638.4757)


DG(i-14:0/PGE1/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-14:0/PGE1/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGE1/i-14:0/0:0)

(2S)-1-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propan-2-yl 12-methyltridecanoic acid

C37H66O8 (638.4757)


DG(PGE1/i-14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGE1/i-14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-14:0/0:0/PGE1)

(2R)-2-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl 12-methyltridecanoic acid

C37H66O8 (638.4757)


DG(i-14:0/0:0/PGE1) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGE1/0:0/i-14:0)

(2S)-2-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl 12-methyltridecanoic acid

C37H66O8 (638.4757)


DG(PGE1/0:0/i-14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-14:0/PGD1/0:0)

(2S)-3-Hydroxy-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl 12-methyltridecanoic acid

C37H66O8 (638.4757)


DG(i-14:0/PGD1/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-14:0/PGD1/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGD1/i-14:0/0:0)

(2S)-1-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propan-2-yl 12-methyltridecanoic acid

C37H66O8 (638.4757)


DG(PGD1/i-14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGD1/i-14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-14:0/0:0/PGD1)

(2R)-2-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl 12-methyltridecanoic acid

C37H66O8 (638.4757)


DG(i-14:0/0:0/PGD1) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGD1/0:0/i-14:0)

(2S)-2-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl 12-methyltridecanoic acid

C37H66O8 (638.4757)


DG(PGD1/0:0/i-14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-16:0/5-iso PGF2VI/0:0)

(2S)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-hydroxypropyl 14-methylpentadecanoic acid

C37H66O8 (638.4757)


DG(i-16:0/5-iso PGF2VI/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-16:0/5-iso PGF2VI/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(5-iso PGF2VI/i-16:0/0:0)

(2S)-1-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-hydroxypropan-2-yl 14-methylpentadecanoic acid

C37H66O8 (638.4757)


DG(5-iso PGF2VI/i-16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(5-iso PGF2VI/i-16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-16:0/0:0/5-iso PGF2VI)

(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-hydroxypropyl 14-methylpentadecanoic acid

C37H66O8 (638.4757)


DG(i-16:0/0:0/5-iso PGF2VI) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(5-iso PGF2VI/0:0/i-16:0)

(2S)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-hydroxypropyl 14-methylpentadecanoic acid

C37H66O8 (638.4757)


DG(5-iso PGF2VI/0:0/i-16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

14-Hydroxy-25-desoxyrollinicin

5-methyl-3-(2,12,13-trihydroxy-13-{5-[5-(1-hydroxyundecyl)oxolan-2-yl]oxolan-2-yl}tridecyl)-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


14-hydroxy-25-desoxyrollinicin is a member of the class of compounds known as annonaceous acetogenins. Annonaceous acetogenins are waxy derivatives of fatty acids (usually C32 or C34), containing a terminal carboxylic acid combined with a 2-propanol unit at the C-2 position to form a methyl- substituted alpha,beta-unsaturated-gamma-lactone. One of their interesting structural features is a single, adjacent, or nonadjacent tetrahydrofuran (THF) or tetrahydropyran (THP) system with one or two flanking hydroxyl group(s) at the center of a long hydrocarbon chain. 14-hydroxy-25-desoxyrollinicin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 14-hydroxy-25-desoxyrollinicin can be found in custard apple, which makes 14-hydroxy-25-desoxyrollinicin a potential biomarker for the consumption of this food product.

   
   

DTXSID70926925

DTXSID70926925

C37H66O8 (638.4757)


   
   

Uvariasolin II

Uvariasolin II

C37H66O8 (638.4757)


   

Gynosaponin TN-1

Gynosaponin TN-1

C36H62O9 (638.4394)


   
   

4-Acetylannonacin

4-Acetylannonacin

C37H66O8 (638.4757)


   
   

10-Hydroxy-asimicin

(+)-10-Hydroxy-asimicin

C37H66O8 (638.4757)


   

(2,4-trans)-28-hydroxybullatacinone|28-hydroxybullatacinone

(2,4-trans)-28-hydroxybullatacinone|28-hydroxybullatacinone

C37H66O8 (638.4757)


   

actinostemmoside A

actinostemmoside A

C36H62O9 (638.4394)


   

Annonin VIII

Annonin VIII

C37H66O8 (638.4757)


   

31-hydroxybullatacin

31-hydroxybullatacin

C37H66O8 (638.4757)


   

cherimoline

cherimoline

C37H66O8 (638.4757)


   

32-hydroxybullatacin

32-hydroxybullatacin

C37H66O8 (638.4757)


   
   

20(S),24(R)-epoxydammaran-3beta,11alpha,25-triol 3-O-beta-D-glucopyranoside

20(S),24(R)-epoxydammaran-3beta,11alpha,25-triol 3-O-beta-D-glucopyranoside

C36H62O9 (638.4394)


   

(20S)-12beta,16beta-trihydroxydammar-24-ene-3beta-O-D-glucopyranoside|(20S)-12??,16??-Trihydroxydammar-24-ene-3??-O-??-glucopyranoside

(20S)-12beta,16beta-trihydroxydammar-24-ene-3beta-O-D-glucopyranoside|(20S)-12??,16??-Trihydroxydammar-24-ene-3??-O-??-glucopyranoside

C36H62O9 (638.4394)


   
   

Annonin XVI

Annonin XVI

C37H66O8 (638.4757)


   

Actinostemmoside B

Actinostemmoside B

C36H62O9 (638.4394)


   

annosquatin B

annosquatin B

C37H66O8 (638.4757)


   

3-O-beta-D-glucopyranosyl-20(S)-protopanaxatriol

3-O-beta-D-glucopyranosyl-20(S)-protopanaxatriol

C36H62O9 (638.4394)


   

Bullatalicinone

Bullatalicinone

C37H66O8 (638.4757)


   
   

30-hydroxybullatacin

30-hydroxybullatacin

C37H66O8 (638.4757)


   

AKOS037515231

AKOS037515231

C36H62O9 (638.4394)


   

Gypenoside LXXVI

Gypenoside LXXVI

C36H62O9 (638.4394)


   

3beta-[{4,6-di-O-acetyl-2,3-dideoxy-alpha-D-erythro-hex-2-enopyranosyl}oxy]lup-12-ene(18beta,19beta)

3beta-[{4,6-di-O-acetyl-2,3-dideoxy-alpha-D-erythro-hex-2-enopyranosyl}oxy]lup-12-ene(18beta,19beta)

C40H62O6 (638.4546)


   

squamostanin D

squamostanin D

C37H66O8 (638.4757)


   

chilianoside A

chilianoside A

C36H62O9 (638.4394)


   

Kizutasaponin K

Kizutasaponin K

C36H62O9 (638.4394)


   

Ginsenoside F1

2-(hydroxymethyl)-6-[(6-methyl-2-{5,8,16-trihydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}hept-5-en-2-yl)oxy]oxane-3,4,5-triol

C36H62O9 (638.4394)


Annotation level-1 Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity.

   

Annonin XIV

3-(13-hydroxy-13-{4-hydroxy-5-[3-hydroxy-5-(1-hydroxyundecyl)oxolan-2-yl]oxolan-2-yl}tridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

Kizuta saponin K7

Kizuta saponin K7

C36H62O9 (638.4394)


   

3-O-alpha-L-rhamnopyranoside-24R-cycloartan-1alpha,3beta,7beta,24,25-pentaol|cyclomacroside C

3-O-alpha-L-rhamnopyranoside-24R-cycloartan-1alpha,3beta,7beta,24,25-pentaol|cyclomacroside C

C36H62O9 (638.4394)


   

SCHEMBL9636721

SCHEMBL9636721

C37H66O8 (638.4757)


   

Chikusetsusaponin-L(10)

Chikusetsusaponin-L(10)

C36H62O9 (638.4394)


   

Mogroside I A1

(2S,3R,4S,5S,6R)-2-[(3R,6R)-6-[(3S,8S,9R,10R,11R,13R,14S,17R)-3,11-dihydroxy-4,4,9,13,14-pentamethyl-2,3,7,8,10,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-hydroxy-2-methylheptan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


   

ginsenoside Rh1

ginsenoside Rh1

C36H62O9 (638.4394)


Annotation level-1 Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β. Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β. Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β.

   

DG(18:3/20:4/0:0)[iso2]

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycerol

C41H66O5 (638.491)


   

DG(18:2/20:5/0:0)[iso2]

1-(9Z,12Z-octadecadienoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerol

C41H66O5 (638.491)


   

DG(16:1/22:6/0:0)[iso2]

1-(9Z-hexadecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C41H66O5 (638.491)


   

Diglyceride

1-Homo-gamma-linolenoyl-2-stearidonoyl-sn-glycerol

C41H66O5 (638.491)


   

annoglaucin

5-methyl-3-(2,8,13-trihydroxy-13-{5-[5-(1-hydroxyundecyl)oxolan-2-yl]oxolan-2-yl}tridecyl)-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

Muricatin C

3-{13-[5-(1,6-dihydroxypentadecyl)oxolan-2-yl]-2,13-dihydroxy-8-oxotridecyl}-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

Rollidecin A

3-(2-hydroxy-9-{5-[5-(1,4,5-trihydroxypentadecyl)oxolan-2-yl]oxolan-2-yl}nonyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

Bullatetrocin

3-(13-hydroxy-13-{5-[5-(1,8,9-trihydroxyundecyl)oxolan-2-yl]oxolan-2-yl}tridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

Rollitacin

3-(13-hydroxy-13-{5-[5-(1,5,6-trihydroxyundecyl)oxolan-2-yl]oxolan-2-yl}tridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

Mucocin

3-(9-{5-[4-(6-decyl-5-hydroxyoxan-2-yl)-1,4-dihydroxybutyl]oxolan-2-yl}-2-hydroxynonyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

glabracin A

3-(8-{5-[5-(5,6-dihydroxyhexadecyl)oxolan-2-yl]oxolan-2-yl}-2,8-dihydroxyoctyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

Purpurenin

3-(13-{5-[5-(1,6-dihydroxyundecyl)oxolan-2-yl]oxolan-2-yl}-8,13-dihydroxytridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

12,15-cis-Squamostatin A

3-[9-(5-{4-[5-(1,5-dihydroxyundecyl)oxolan-2-yl]-1,4-dihydroxybutyl}oxolan-2-yl)nonyl]-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

Rollimusin

3-(13-{5-[5-(1,5-dihydroxyundecyl)oxolan-2-yl]oxolan-2-yl}-8,13-dihydroxytridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

20,23-cis-Bullatalicinone

5-[7-(5-{1,4-dihydroxy-4-[5-(1-hydroxyundecyl)oxolan-2-yl]butyl}oxolan-2-yl)heptyl]-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


   

27-hydroxybullatacin

3-(13-{5-[5-(1,4-dihydroxyundecyl)oxolan-2-yl]oxolan-2-yl}-2,13-dihydroxytridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

9-Hydroxyasimicinone

5-(5,11-dihydroxy-11-{5-[5-(1-hydroxyundecyl)oxolan-2-yl]oxolan-2-yl}undecyl)-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


   

Sanchinoside B1

2-({5,16-dihydroxy-14-[(2E)-6-hydroxy-6-methylhept-2-en-2-yl]-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-8-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


   

Sanchinoside B2

2-{[5,16-dihydroxy-14-(2-hydroxy-6-methylhept-5-en-2-yl)-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-8-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


(20R)-Ginsenoside Rh1, the R isomer of Ginsenoside Rh1 isolated from Panax Ginseng, inhibits the thrombin-induced conversion of fibrinogen to fibrin[1]. (20R)-Ginsenoside Rh1, the R isomer of Ginsenoside Rh1 isolated from Panax Ginseng, inhibits the thrombin-induced conversion of fibrinogen to fibrin[1]. Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β. Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β. Ginsenoside Rh1 (Prosapogenin A2) inhibits the expression of PPAR-γ, TNF-α, IL-6, and IL-1β.

   

12-Hydroxybullatacin

5-methyl-3-(2,10,13-trihydroxy-13-{5-[5-(1-hydroxyundecyl)oxolan-2-yl]oxolan-2-yl}tridecyl)-2,5-dihydrofuran-2-one

C37H66O8 (638.4757)


   

DG 38:7

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-sn-glycerol

C41H66O5 (638.491)


   

Annosquatin IV

Annosquatin IV

C37H66O8 (638.4757)


   
   

Annosquatin-II

Annosquatin-II

C37H66O8 (638.4757)


   

annosquatin A

annosquatin A

C37H66O8 (638.4757)


   

Squamostanin-A

Squamostanin-A

C37H66O8 (638.4757)


   

Squamostanin-B

Squamostanin-B

C37H66O8 (638.4757)


   

Annosquatin-III

Annosquatin-III

C37H66O8 (638.4757)


   

Squamocin-P

Squamocin-P

C37H66O8 (638.4757)


   

(2E,4R)-4-[(1R,3aS,4E,7aR)-4-[(2E)-2-[(3S,5R)-3,5-Bis[[(tert-butyl)dimethylsilyl]oxy]-2-methylenecyclohexylidene]ethylidene]octahydro-7a-methyl-1H-inden-1-yl]-1-cyclopropyl-2-penten-1-one

(2E,4R)-4-[(1R,3aS,4E,7aR)-4-[(2E)-2-[(3S,5R)-3,5-Bis[[(tert-butyl)dimethylsilyl]oxy]-2-methylenecyclohexylidene]ethylidene]octahydro-7a-methyl-1H-inden-1-yl]-1-cyclopropyl-2-penten-1-one

C39H66O3Si2 (638.455)


   

Hexamethylene bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]

Hexamethylene bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]

C40H62O6 (638.4546)


   

NAROACTY CL-140

NAROACTY CL-140

C34H70O10 (638.4969)


   

rac 1,2-Dioleoyl-3-chloropropanediol

rac 1,2-Dioleoyl-3-chloropropanediol

C39H71ClO4 (638.5041)


   

calcium(2+) 12-hydroxyoctadecanoate

calcium(2+) 12-hydroxyoctadecanoate

C36H70CaO6 (638.4798)


   

rac 1,2-Dioleoyl-3-chloropropanediol-d5

rac 1,2-Dioleoyl-3-chloropropanediol-d5

C39H71ClO4 (638.5041)


   

5-[7-[5-[1,4-Dihydroxy-4-[5-(1-hydroxyundecyl)oxolan-2-yl]butyl]oxolan-2-yl]heptyl]-3-(2-oxopropyl)oxolan-2-one

5-[7-[5-[1,4-Dihydroxy-4-[5-(1-hydroxyundecyl)oxolan-2-yl]butyl]oxolan-2-yl]heptyl]-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


   

4-[13-[5-[5-(1,4-dihydroxyundecyl)oxolan-2-yl]oxolan-2-yl]-2,13-dihydroxytridecyl]-2-methyl-2H-furan-5-one

4-[13-[5-[5-(1,4-dihydroxyundecyl)oxolan-2-yl]oxolan-2-yl]-2,13-dihydroxytridecyl]-2-methyl-2H-furan-5-one

C37H66O8 (638.4757)


   

14-Hydroxy-25-desoxyrollinicin

14-Hydroxy-25-desoxyrollinicin

C37H66O8 (638.4757)


   

DG(14:0/PGF2alpha/0:0)

DG(14:0/PGF2alpha/0:0)

C37H66O8 (638.4757)


   

DG(PGF2alpha/14:0/0:0)

DG(PGF2alpha/14:0/0:0)

C37H66O8 (638.4757)


   

DG(14:0/0:0/PGF2alpha)

DG(14:0/0:0/PGF2alpha)

C37H66O8 (638.4757)


   

DG(PGF2alpha/0:0/14:0)

DG(PGF2alpha/0:0/14:0)

C37H66O8 (638.4757)


   

DG(i-14:0/PGF2alpha/0:0)

DG(i-14:0/PGF2alpha/0:0)

C37H66O8 (638.4757)


   

DG(PGF2alpha/i-14:0/0:0)

DG(PGF2alpha/i-14:0/0:0)

C37H66O8 (638.4757)


   

DG(i-14:0/0:0/PGF2alpha)

DG(i-14:0/0:0/PGF2alpha)

C37H66O8 (638.4757)


   

DG(PGF2alpha/0:0/i-14:0)

DG(PGF2alpha/0:0/i-14:0)

C37H66O8 (638.4757)


   

DG(14:0/PGE1/0:0)

DG(14:0/PGE1/0:0)

C37H66O8 (638.4757)


   

DG(PGE1/14:0/0:0)

DG(PGE1/14:0/0:0)

C37H66O8 (638.4757)


   

DG(14:0/0:0/PGE1)

DG(14:0/0:0/PGE1)

C37H66O8 (638.4757)


   

DG(PGE1/0:0/14:0)

DG(PGE1/0:0/14:0)

C37H66O8 (638.4757)


   

DG(14:0/PGD1/0:0)

DG(14:0/PGD1/0:0)

C37H66O8 (638.4757)


   

DG(PGD1/14:0/0:0)

DG(PGD1/14:0/0:0)

C37H66O8 (638.4757)


   

DG(14:0/0:0/PGD1)

DG(14:0/0:0/PGD1)

C37H66O8 (638.4757)


   

DG(PGD1/0:0/14:0)

DG(PGD1/0:0/14:0)

C37H66O8 (638.4757)


   

DG(i-14:0/PGE1/0:0)

DG(i-14:0/PGE1/0:0)

C37H66O8 (638.4757)


   

DG(PGE1/i-14:0/0:0)

DG(PGE1/i-14:0/0:0)

C37H66O8 (638.4757)


   

DG(i-14:0/0:0/PGE1)

DG(i-14:0/0:0/PGE1)

C37H66O8 (638.4757)


   

DG(PGE1/0:0/i-14:0)

DG(PGE1/0:0/i-14:0)

C37H66O8 (638.4757)


   

DG(i-14:0/PGD1/0:0)

DG(i-14:0/PGD1/0:0)

C37H66O8 (638.4757)


   

DG(PGD1/i-14:0/0:0)

DG(PGD1/i-14:0/0:0)

C37H66O8 (638.4757)


   

DG(i-14:0/0:0/PGD1)

DG(i-14:0/0:0/PGD1)

C37H66O8 (638.4757)


   

DG(PGD1/0:0/i-14:0)

DG(PGD1/0:0/i-14:0)

C37H66O8 (638.4757)


   

DG(16:0/5-iso PGF2VI/0:0)

DG(16:0/5-iso PGF2VI/0:0)

C37H66O8 (638.4757)


   

DG(5-iso PGF2VI/16:0/0:0)

DG(5-iso PGF2VI/16:0/0:0)

C37H66O8 (638.4757)


   

DG(16:0/0:0/5-iso PGF2VI)

DG(16:0/0:0/5-iso PGF2VI)

C37H66O8 (638.4757)


   

DG(5-iso PGF2VI/0:0/16:0)

DG(5-iso PGF2VI/0:0/16:0)

C37H66O8 (638.4757)


   

DG(i-16:0/5-iso PGF2VI/0:0)

DG(i-16:0/5-iso PGF2VI/0:0)

C37H66O8 (638.4757)


   

DG(5-iso PGF2VI/i-16:0/0:0)

DG(5-iso PGF2VI/i-16:0/0:0)

C37H66O8 (638.4757)


   

DG(i-16:0/0:0/5-iso PGF2VI)

DG(i-16:0/0:0/5-iso PGF2VI)

C37H66O8 (638.4757)


   

DG(5-iso PGF2VI/0:0/i-16:0)

DG(5-iso PGF2VI/0:0/i-16:0)

C37H66O8 (638.4757)


   

Squamostatin A

Squamostatin A

C37H66O8 (638.4757)


   

Annosquatin-II, (rel)-

Annosquatin-II, (rel)-

C37H66O8 (638.4757)


A natural product found in Annona squamosa.

   

Annosquatin-I, (rel)-

Annosquatin-I, (rel)-

C37H66O8 (638.4757)


A natural product found in Annona squamosa.

   

NAGlySer 12:0/19:1

NAGlySer 12:0/19:1

C36H66N2O7 (638.487)


   

NAGlySer 10:0/21:1

NAGlySer 10:0/21:1

C36H66N2O7 (638.487)


   

NAGlySer 18:0/13:1

NAGlySer 18:0/13:1

C36H66N2O7 (638.487)


   

NAGlySer 13:0/18:1

NAGlySer 13:0/18:1

C36H66N2O7 (638.487)


   

NAGlySer 14:1/17:0

NAGlySer 14:1/17:0

C36H66N2O7 (638.487)


   

NAGlySer 18:1/13:0

NAGlySer 18:1/13:0

C36H66N2O7 (638.487)


   

NAGlySer 19:1/12:0

NAGlySer 19:1/12:0

C36H66N2O7 (638.487)


   

NAGlySer 17:1/14:0

NAGlySer 17:1/14:0

C36H66N2O7 (638.487)


   

NAGlySer 17:0/14:1

NAGlySer 17:0/14:1

C36H66N2O7 (638.487)


   

NAGlySer 13:1/18:0

NAGlySer 13:1/18:0

C36H66N2O7 (638.487)


   

NAGlySer 21:1/10:0

NAGlySer 21:1/10:0

C36H66N2O7 (638.487)


   

NAGlySer 11:0/20:1

NAGlySer 11:0/20:1

C36H66N2O7 (638.487)


   

NAGlySer 15:1/16:0

NAGlySer 15:1/16:0

C36H66N2O7 (638.487)


   

NAGlySer 14:0/17:1

NAGlySer 14:0/17:1

C36H66N2O7 (638.487)


   

NAGlySer 15:0/16:1

NAGlySer 15:0/16:1

C36H66N2O7 (638.487)


   

NAGlySer 20:1/11:0

NAGlySer 20:1/11:0

C36H66N2O7 (638.487)


   

NAGlySer 16:0/15:1

NAGlySer 16:0/15:1

C36H66N2O7 (638.487)


   

NAGlySer 16:1/15:0

NAGlySer 16:1/15:0

C36H66N2O7 (638.487)


   

NAOrn 18:4/16:3

NAOrn 18:4/16:3

C39H62N2O5 (638.4658)


   

NAOrn 18:5/16:2

NAOrn 18:5/16:2

C39H62N2O5 (638.4658)


   

NAOrn 16:4/18:3

NAOrn 16:4/18:3

C39H62N2O5 (638.4658)


   

[3-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] heptacosanoate

[3-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] heptacosanoate

C33H67O9P (638.4522)


   

Mgdg O-9:0_18:4

Mgdg O-9:0_18:4

C36H62O9 (638.4394)


   

Mgdg O-20:4_7:0

Mgdg O-20:4_7:0

C36H62O9 (638.4394)


   

Mgdg O-22:4_5:0

Mgdg O-22:4_5:0

C36H62O9 (638.4394)


   

Mgdg O-18:4_9:0

Mgdg O-18:4_9:0

C36H62O9 (638.4394)


   

Mgdg O-24:4_3:0

Mgdg O-24:4_3:0

C36H62O9 (638.4394)


   

Mgdg O-11:0_16:4

Mgdg O-11:0_16:4

C36H62O9 (638.4394)


   

Mgdg O-16:4_11:0

Mgdg O-16:4_11:0

C36H62O9 (638.4394)


   

PE-Cer 17:1;2O/16:4

PE-Cer 17:1;2O/16:4

C35H63N2O6P (638.4424)


   

PE-Cer 14:3;2O/19:2

PE-Cer 14:3;2O/19:2

C35H63N2O6P (638.4424)


   

PE-Cer 17:3;2O/16:2

PE-Cer 17:3;2O/16:2

C35H63N2O6P (638.4424)


   

PE-Cer 13:1;2O/20:4

PE-Cer 13:1;2O/20:4

C35H63N2O6P (638.4424)


   

PE-Cer 15:1;2O/18:4

PE-Cer 15:1;2O/18:4

C35H63N2O6P (638.4424)


   

PE-Cer 17:2;2O/16:3

PE-Cer 17:2;2O/16:3

C35H63N2O6P (638.4424)


   

PE-Cer 13:0;2O/20:5

PE-Cer 13:0;2O/20:5

C35H63N2O6P (638.4424)


   

PE-Cer 16:3;2O/17:2

PE-Cer 16:3;2O/17:2

C35H63N2O6P (638.4424)


   

PE-Cer 15:3;2O/18:2

PE-Cer 15:3;2O/18:2

C35H63N2O6P (638.4424)


   

PE-Cer 15:0;2O/18:5

PE-Cer 15:0;2O/18:5

C35H63N2O6P (638.4424)


   

PE-Cer 13:2;2O/20:3

PE-Cer 13:2;2O/20:3

C35H63N2O6P (638.4424)


   

PE-Cer 15:2;2O/18:3

PE-Cer 15:2;2O/18:3

C35H63N2O6P (638.4424)


   

[(E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H63N2O6P (638.4424)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] undecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] undecanoate

C33H67O9P (638.4522)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] tetradecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] tetradecanoate

C33H67O9P (638.4522)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] dodecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] dodecanoate

C33H67O9P (638.4522)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] decanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] decanoate

C33H67O9P (638.4522)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] pentadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] pentadecanoate

C33H67O9P (638.4522)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] tridecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] tridecanoate

C33H67O9P (638.4522)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] hexadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] hexadecanoate

C33H67O9P (638.4522)


   

[1-Decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] heptadecanoate

[1-Decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] heptadecanoate

C33H67O9P (638.4522)


   

[3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]decyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]decyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H63N2O6P (638.4424)


   

[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]dodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]dodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H63N2O6P (638.4424)


   

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H63N2O6P (638.4424)


   

[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H63N2O6P (638.4424)


   

[(4E,8E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxytetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxytetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H63N2O6P (638.4424)


   

[3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]dodecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]dodecyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H63N2O6P (638.4424)


   

[(4E,8E,12E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxytetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxytetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H63N2O6P (638.4424)


   

[(E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxytetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxytetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H63N2O6P (638.4424)


   

(1-decanoyloxy-3-hydroxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

(1-decanoyloxy-3-hydroxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C41H66O5 (638.491)


   

(1-dodecanoyloxy-3-hydroxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

(1-dodecanoyloxy-3-hydroxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C41H66O5 (638.491)


   

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C41H66O5 (638.491)


   

[(4E,8E,12E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxytetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxytetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H63N2O6P (638.4424)


   

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (Z)-tridec-8-enoate

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (Z)-tridec-8-enoate

C40H62O6 (638.4546)


   

[2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H63N2O6P (638.4424)


   

[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

C41H66O5 (638.491)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C41H66O5 (638.491)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C41H66O5 (638.491)


   

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H66O5 (638.491)


   

[1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H66O5 (638.491)


   

[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C41H66O5 (638.491)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C41H66O5 (638.491)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C41H66O5 (638.491)


   

(1-hydroxy-3-octanoyloxypropan-2-yl) (9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoate

(1-hydroxy-3-octanoyloxypropan-2-yl) (9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoate

C41H66O5 (638.491)


   

[1-carboxy-3-[3-decanoyloxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-decanoyloxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[2-[(E)-tetradec-9-enoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-tetradec-9-enoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[3-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-heptadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-heptadecanoyloxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C41H66O5 (638.491)


   

[1-carboxy-3-[2-dodecanoyloxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-dodecanoyloxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (14E,16E)-docosa-14,16-dienoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (14E,16E)-docosa-14,16-dienoate

C41H66O5 (638.491)


   

[1-carboxy-3-[3-dodecanoyloxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-dodecanoyloxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[2-[(E)-hexadec-7-enoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-hexadec-7-enoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[(2S)-1-hydroxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-1-hydroxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H66O5 (638.491)


   

[1-carboxy-3-[2-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[(2S)-1-hydroxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-1-hydroxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H66O5 (638.491)


   

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoate

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoate

C41H66O5 (638.491)


   

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[(2S)-3-hydroxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-3-hydroxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H66O5 (638.491)


   

[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-heptadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-heptadecanoyloxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H66O5 (638.491)


   

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C41H66O5 (638.491)


   

[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C41H66O5 (638.491)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-pentadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-pentadecanoyloxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (13E,16E,19E)-docosa-13,16,19-trienoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (13E,16E,19E)-docosa-13,16,19-trienoate

C41H66O5 (638.491)


   

[1-carboxy-3-[2-decanoyloxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-decanoyloxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[3-[(E)-tetradec-9-enoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-tetradec-9-enoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C41H66O5 (638.491)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-pentadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-pentadecanoyloxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[3-[(E)-hexadec-7-enoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-hexadec-7-enoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[(2S)-3-hydroxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-3-hydroxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H66O5 (638.491)


   

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[2-[(Z)-tetradec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(Z)-tetradec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[3-nonanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-nonanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-hexanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-hexanoyloxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[3-decanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-decanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-octanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-octanoyloxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[3-propanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-propanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[3-heptanoyloxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-heptanoyloxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-pentanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-pentanoyloxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

[1-carboxy-3-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C37H68NO7+ (638.4996)


   

2-[carboxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C36H64NO8+ (638.4632)


   

2-[carboxy-[3-decanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-decanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C36H64NO8+ (638.4632)


   

Ginsenoside

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-[(2S)-6-methyl-2-[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,6,12-trihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]hept-5-en-2-yl]oxyoxane-3,4,5-triol

C36H62O9 (638.4394)


Ginsenoside F1 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite and an apoptosis inhibitor. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a ginsenoside, a tetracyclic triterpenoid, a 6alpha-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside F1 is a natural product found in Panax ginseng, Panax notoginseng, and Gynostemma yixingense with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity.

   

Bullatalicin

Bullatalicin

C37H66O8 (638.4757)


   

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycerol

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycerol

C41H66O5 (638.491)


   

1-(9Z,12Z-octadecadienoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerol

1-(9Z,12Z-octadecadienoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerol

C41H66O5 (638.491)


   

1-(9Z-hexadecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

1-(9Z-hexadecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C41H66O5 (638.491)


   

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-sn-glycerol

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-sn-glycerol

C41H66O5 (638.491)


   

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycerol

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycerol

C41H66O5 (638.491)


   

DG(18:3(6Z,9Z,12Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

DG(18:3(6Z,9Z,12Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

C41H66O5 (638.491)


   

DG(18:3(9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

DG(18:3(9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

C41H66O5 (638.491)


   

DG(18:4(6Z,9Z,12Z,15Z)/20:3(5Z,8Z,11Z)/0:0)

DG(18:4(6Z,9Z,12Z,15Z)/20:3(5Z,8Z,11Z)/0:0)

C41H66O5 (638.491)


   

DG(20:3(5Z,8Z,11Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

DG(20:3(5Z,8Z,11Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

C41H66O5 (638.491)


   

DG(20:3(8Z,11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

DG(20:3(8Z,11Z,14Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

C41H66O5 (638.491)


   

DG(20:4(5Z,8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0)

DG(20:4(5Z,8Z,11Z,14Z)/18:3(6Z,9Z,12Z)/0:0)

C41H66O5 (638.491)


   

DG(20:4(5Z,8Z,11Z,14Z)/18:3(9Z,12Z,15Z)/0:0)

DG(20:4(5Z,8Z,11Z,14Z)/18:3(9Z,12Z,15Z)/0:0)

C41H66O5 (638.491)


   

DG(20:4(8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z)/0:0)

DG(20:4(8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z)/0:0)

C41H66O5 (638.491)


   

DG(20:4(8Z,11Z,14Z,17Z)/18:3(9Z,12Z,15Z)/0:0)

DG(20:4(8Z,11Z,14Z,17Z)/18:3(9Z,12Z,15Z)/0:0)

C41H66O5 (638.491)


   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:2(9Z,12Z)/0:0)

DG(20:5(5Z,8Z,11Z,14Z,17Z)/18:2(9Z,12Z)/0:0)

C41H66O5 (638.491)


   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0)

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:1(9Z)/0:0)

C41H66O5 (638.491)


   

1-Palmitoleoyl-3-docosahexaenoyl-sn-glycerol

1-Palmitoleoyl-3-docosahexaenoyl-sn-glycerol

C41H66O5 (638.491)


   

1-Meadoyl-3-stearidonoyl-sn-glycerol

1-Meadoyl-3-stearidonoyl-sn-glycerol

C41H66O5 (638.491)


   

1-g-Linolenoyl-3-arachidonoyl-sn-glycerol

1-g-Linolenoyl-3-arachidonoyl-sn-glycerol

C41H66O5 (638.491)


   

1-g-Linolenoyl-3-eicsoatetraenoyl-sn-glycerol

1-g-Linolenoyl-3-eicsoatetraenoyl-sn-glycerol

C41H66O5 (638.491)


   

1-Homo-g-linolenoyl-3-stearidonoyl-sn-glycerol

1-Homo-g-linolenoyl-3-stearidonoyl-sn-glycerol

C41H66O5 (638.491)


   

1-Arachidonoyl-3-a-linolenoyl-sn-glycerol

1-Arachidonoyl-3-a-linolenoyl-sn-glycerol

C41H66O5 (638.491)


   

1-a-Linolenoyl-3-eicsoatetraenoyl-sn-glycerol

1-a-Linolenoyl-3-eicsoatetraenoyl-sn-glycerol

C41H66O5 (638.491)


   

diacylglycerol 38:7

diacylglycerol 38:7

C41H66O5 (638.491)


A diglyceride in which the two acyl groups contain a total of 38 carbons and 7 double bonds.

   

squamostatin-A

squamostatin-A

C37H66O8 (638.4757)


A natural product found in Annona squamosa.

   

TG(38:7)

TG(16:1(1)_11:3_11:3)

C41H66O5 (638.491)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

TG(37:7)

TG(6:0_11:3_20:4)

C40H62O6 (638.4546)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   

DG 16:1_22:6

DG 16:1_22:6

C41H66O5 (638.491)


   

DG 18:2_20:5

DG 18:2_20:5

C41H66O5 (638.491)


   

DG 18:3_20:4

DG 18:3_20:4

C41H66O5 (638.491)


   

DG 18:4_20:3

DG 18:4_20:3

C41H66O5 (638.491)


   

MGDG O-27:4

MGDG O-27:4

C36H62O9 (638.4394)


   
   
   

PG O-14:0/13:0

PG O-14:0/13:0

C33H67O9P (638.4522)


   

PG O-16:0/11:0

PG O-16:0/11:0

C33H67O9P (638.4522)


   
   

CerPE 15:1;O2/18:4

CerPE 15:1;O2/18:4

C35H63N2O6P (638.4424)


   

CerPE 15:2;O2/18:3

CerPE 15:2;O2/18:3

C35H63N2O6P (638.4424)


   
   
   
   

DCAE 17:3

DCAE 17:3

C41H66O5 (638.491)


   

(2r,3r,4s,5s,6r)-2-{[(5s)-7,11-dihydroxy-1-(2-hydroxy-6-methylhept-5-en-2-yl)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(5s)-7,11-dihydroxy-1-(2-hydroxy-6-methylhept-5-en-2-yl)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


   

(3r,5r)-5-[(11r)-11-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-11-hydroxyundecyl]-3-(2-oxopropyl)oxolan-2-one

(3r,5r)-5-[(11r)-11-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-11-hydroxyundecyl]-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(13r)-13-hydroxy-13-[(2r,2'r,5r,5's)-5'-[(1r,5r,6r)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(13r)-13-hydroxy-13-[(2r,2'r,5r,5's)-5'-[(1r,5r,6r)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-9-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5s)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-9-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5s)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-5-methyl-3-[(2s,10r,13r)-2,10,13-trihydroxy-13-[(2r,2'r,5s,5's)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

(5r)-5-methyl-3-[(2s,10r,13r)-2,10,13-trihydroxy-13-[(2r,2'r,5s,5's)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

(2s,3r,4s,5s,6r)-2-({2-[7,11-dihydroxy-9a-(hydroxymethyl)-3a,3b,6,6-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-({2-[7,11-dihydroxy-9a-(hydroxymethyl)-3a,3b,6,6-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


   

(2r)-1-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-7-[(2r,5s)-5-[(1s,4r,5r)-1,4,5-trihydroxynonadecyl]oxolan-2-yl]heptan-2-yl acetate

(2r)-1-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]-7-[(2r,5s)-5-[(1s,4r,5r)-1,4,5-trihydroxynonadecyl]oxolan-2-yl]heptan-2-yl acetate

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-9-[(2s,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-9-[(2s,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7s,9as,9br,10r,11ar)-10-hydroxy-1-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7s,9as,9br,10r,11ar)-10-hydroxy-1-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


   

5-{11-[5'-(1,5-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-11-hydroxyundecyl}-3-(2-oxopropyl)oxolan-2-one

5-{11-[5'-(1,5-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-11-hydroxyundecyl}-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


   

(5s)-5-methyl-3-[(2r,13r)-2,8,13-trihydroxy-13-[(2r,2's,5r,5'r)-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2r,13r)-2,8,13-trihydroxy-13-[(2r,2's,5r,5'r)-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11as)-7,11-dihydroxy-1-[(2s)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11as)-7,11-dihydroxy-1-[(2s)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


   

(5s)-3-[(2r)-9-[(2s,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-9-[(2s,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-9-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-9-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

2-{[7,11-dihydroxy-1-(2-hydroxy-6-methylhept-5-en-2-yl)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[7,11-dihydroxy-1-(2-hydroxy-6-methylhept-5-en-2-yl)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


   

(5s)-3-[(2r)-9-[(5s)-5-[(1s,4s)-1,4-dihydroxy-4-[(2s,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-9-[(5s)-5-[(1s,4s)-1,4-dihydroxy-4-[(2s,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-5-methyl-3-[(2r,8r,13r)-2,8,13-trihydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2r,8r,13r)-2,8,13-trihydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-8,9-dihydroxy-1-[(2r)-2-hydroxy-6-methylhept-6-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-8,9-dihydroxy-1-[(2r)-2-hydroxy-6-methylhept-6-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


   

(5r)-3-{9-[(2r,5s)-5-[(1r,4r)-4-[(2s,5s)-5-[(1s,5r)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

(5r)-3-{9-[(2r,5s)-5-[(1r,4r)-4-[(2s,5s)-5-[(1s,5r)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(13s)-13-hydroxy-13-[(2s,2's,5s,5'r)-5'-[(1s)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(13s)-13-hydroxy-13-[(2s,2's,5s,5'r)-5'-[(1s)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-5-methyl-3-[(2s,10r,13s)-2,10,13-trihydroxy-13-[(2s,2's,5s,5's)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

(5r)-5-methyl-3-[(2s,10r,13s)-2,10,13-trihydroxy-13-[(2s,2's,5s,5's)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

3-{13-[5'-(1,5-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-8,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

3-{13-[5'-(1,5-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-8,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-7-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxyheptyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-7-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxyheptyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2s)-9-[(2s,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5s)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s)-9-[(2s,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5s)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

2-(hydroxymethyl)-6-[(6-methyl-2-{5,7,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}hept-6-en-2-yl)oxy]oxane-3,4,5-triol

2-(hydroxymethyl)-6-[(6-methyl-2-{5,7,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}hept-6-en-2-yl)oxy]oxane-3,4,5-triol

C36H62O9 (638.4394)


   

(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-5,7,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-6-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-5,7,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-6-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


   

(5s)-3-[(10s,13s)-13-[(2s,2'r,5s,5's)-5'-[(1r,5r)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-10,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(10s,13s)-13-[(2s,2'r,5s,5's)-5'-[(1r,5r)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-10,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-5-methyl-3-[(2r,8r,13r)-2,8,13-trihydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2r,8r,13r)-2,8,13-trihydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

(3s,5r)-5-[(11r)-11-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-11-hydroxyundecyl]-3-(2-oxopropyl)oxolan-2-one

(3s,5r)-5-[(11r)-11-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-11-hydroxyundecyl]-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2r)-9-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2r)-9-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r,13r)-13-[(2s,2's,5s,5's)-5'-[(1s)-1,7-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r,13r)-13-[(2s,2's,5s,5's)-5'-[(1s)-1,7-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(3r,5r)-5-{7-[(2s,5s)-5-[(1s,4s)-1,4-dihydroxy-4-[(2r,5s)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]heptyl}-3-(2-oxopropyl)oxolan-2-one

(3r,5r)-5-{7-[(2s,5s)-5-[(1s,4s)-1,4-dihydroxy-4-[(2r,5s)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]heptyl}-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


   

20(r)-ginsenosiderh1

20(R)- ginsenoside Rh1

C36H62O9 (638.4394)


{"Ingredient_id": "HBIN003459","Ingredient_name": "20(r)-ginsenosiderh1","Alias": "20(R)- ginsenoside Rh1","Ingredient_formula": "C36H62O9","Ingredient_Smile": "CC(=CCCC(C)(C1CCC2(C1C(CC3C2(CC(C4C3(CCC(C4(C)C)O)C)OC5C(C(C(C(O5)CO)O)O)O)C)O)C)O)C","Ingredient_weight": "638.9 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15576","TCMID_id": "41119;8433","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "137795983","DrugBank_id": "NA"}

   

(20s)-12β,16β-trihydroxydammar-24-ene-3β-o-β-glucopyranoside

NA

C36H62O9 (638.4394)


{"Ingredient_id": "HBIN003468","Ingredient_name": "(20s)-12\u03b2,16\u03b2-trihydroxydammar-24-ene-3\u03b2-o-\u03b2-glucopyranoside","Alias": "NA","Ingredient_formula": "C36H62O9","Ingredient_Smile": "CC(=CCCC(C)(C1C(CC2(C1C(CC3C2(CCC4C3(CCC(C4(C)C)OC5C(C(C(C(O5)CO)O)O)O)C)C)O)C)O)O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "21683","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

annoglaucin

NA

C37H66O8 (638.4757)


{"Ingredient_id": "HBIN016212","Ingredient_name": "annoglaucin","Alias": "NA","Ingredient_formula": "C37H66O8","Ingredient_Smile": "CCCCCCCCCCC(C1CCC(O1)C2CCC(O2)C(CCCCC(CCCCCC(CC3=CC(OC3=O)C)O)O)O)O","Ingredient_weight": "638.9 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1302","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101918979","DrugBank_id": "NA"}

   

(5r)-3-[(2s)-2-hydroxy-9-[(2s,2's,5r,5's)-5'-[(1s,4r,5s)-1,4,5-trihydroxypentadecyl]-[2,2'-bioxolan]-5-yl]nonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s)-2-hydroxy-9-[(2s,2's,5r,5's)-5'-[(1s,4r,5s)-1,4,5-trihydroxypentadecyl]-[2,2'-bioxolan]-5-yl]nonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(13r)-13-hydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s,8r,9s)-1,8,9-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(13r)-13-hydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s,8r,9s)-1,8,9-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2s)-9-[(2s,5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s)-9-[(2s,5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-8,9-dihydroxy-1-[(2r)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-8,9-dihydroxy-1-[(2r)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


   

(5r)-3-[(2r)-9-[(2s,5s)-5-[(1r,4s)-1,4-dihydroxy-4-[(2s,5s)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2r)-9-[(2s,5s)-5-[(1r,4s)-1,4-dihydroxy-4-[(2s,5s)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,9s)-1,9-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,9s)-1,9-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(2s,3r,4s,5s,6r)-2-{[(2s,5z)-2-[(1s,3ar,3br,4s,5ar,7s,9as,9br,11ar)-4,7-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-7-hydroxy-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,5z)-2-[(1s,3ar,3br,4s,5ar,7s,9as,9br,11ar)-4,7-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-7-hydroxy-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


   

(5s)-5-methyl-3-[(2r,10s,13r)-2,10,13-trihydroxy-13-[(2s,2's,5s,5's)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2r,10s,13r)-2,10,13-trihydroxy-13-[(2s,2's,5s,5's)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

5-methyl-3-[(13r)-2,8,13-trihydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

5-methyl-3-[(13r)-2,8,13-trihydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2s)-9-[(2r,5r)-5-[(1s,4s)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2s)-9-[(2r,5r)-5-[(1s,4s)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2s)-9-[(2s,5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s)-9-[(2s,5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-5-methyl-3-[(2r,8r,13r)-2,8,13-trihydroxy-13-[(2s,2's,5r,5'r)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2r,8r,13r)-2,8,13-trihydroxy-13-[(2s,2's,5r,5'r)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2s,13s)-13-[(2s,5s)-5-[(1r,6s)-1,6-dihydroxypentadecyl]oxolan-2-yl]-2,13-dihydroxy-8-oxotridecyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s,13s)-13-[(2s,5s)-5-[(1r,6s)-1,6-dihydroxypentadecyl]oxolan-2-yl]-2,13-dihydroxy-8-oxotridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(10r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-10,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(10r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-10,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-5-methyl-3-[(2r,10s,13r)-2,10,13-trihydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2r,10s,13r)-2,10,13-trihydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(1s,3ar,3br,5ar,7r,8r,9ar,9br,11r,11as)-7,8,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s)-2-[(1s,3ar,3br,5ar,7r,8r,9ar,9br,11r,11as)-7,8,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O9 (638.4394)


   

3-{13-hydroxy-13-[5'-(1,5,6-trihydroxyundecyl)-[2,2'-bioxolan]-5-yl]tridecyl}-5-methyl-5h-furan-2-one

3-{13-hydroxy-13-[5'-(1,5,6-trihydroxyundecyl)-[2,2'-bioxolan]-5-yl]tridecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

2-(hydroxymethyl)-6-[(6-methyl-2-{7,8,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}hept-5-en-2-yl)oxy]oxane-3,4,5-triol

2-(hydroxymethyl)-6-[(6-methyl-2-{7,8,11-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}hept-5-en-2-yl)oxy]oxane-3,4,5-triol

C36H62O9 (638.4394)


   

(5s)-3-[(2r,13r)-2,13-dihydroxy-13-[(2r,2'r,4r,5r,5'r)-4-hydroxy-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r,13r)-2,13-dihydroxy-13-[(2r,2'r,4r,5r,5'r)-4-hydroxy-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-{13-[5'-(1,8-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

3-{13-[5'-(1,8-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,7s)-1,7-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,7s)-1,7-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-2-hydroxy-9-[(2s,2's,5r,5'r)-5'-[(1r,4r,5s)-1,4,5-trihydroxypentadecyl]-[2,2'-bioxolan]-5-yl]nonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-2-hydroxy-9-[(2s,2's,5r,5'r)-5'-[(1r,4r,5s)-1,4,5-trihydroxypentadecyl]-[2,2'-bioxolan]-5-yl]nonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(10s,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-10,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(10s,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-10,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2s)-2-hydroxy-9-[(2r,2'r,5s,5's)-5'-[(1s,4r,5s)-1,4,5-trihydroxypentadecyl]-[2,2'-bioxolan]-5-yl]nonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s)-2-hydroxy-9-[(2r,2'r,5s,5's)-5'-[(1s,4r,5s)-1,4,5-trihydroxypentadecyl]-[2,2'-bioxolan]-5-yl]nonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(8r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,6s)-1,6-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-8,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(8r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,6s)-1,6-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-8,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-{9-[(2r)-5-[(1s,4s)-4-(6-decyl-5-hydroxyoxan-2-yl)-1,4-dihydroxybutyl]oxolan-2-yl]-2-hydroxynonyl}-5-methyl-5h-furan-2-one

3-{9-[(2r)-5-[(1s,4s)-4-(6-decyl-5-hydroxyoxan-2-yl)-1,4-dihydroxybutyl]oxolan-2-yl]-2-hydroxynonyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-9-[(2s,5s)-5-[(1s,4s)-1,4-dihydroxy-4-[(2s,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-9-[(2s,5s)-5-[(1s,4s)-1,4-dihydroxy-4-[(2s,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-{13-[3,3'-dihydroxy-5'-(1-hydroxyundecyl)-[2,2'-bioxolan]-5-yl]-13-hydroxytridecyl}-5-methyl-5h-furan-2-one

3-{13-[3,3'-dihydroxy-5'-(1-hydroxyundecyl)-[2,2'-bioxolan]-5-yl]-13-hydroxytridecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-{9-[(2r,5r)-5-[(1s,4r)-4-[(2r,5r)-5-[(1s,5s)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

(5s)-3-{9-[(2r,5r)-5-[(1s,4r)-4-[(2r,5r)-5-[(1s,5s)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-[7-(5-{1,4-dihydroxy-4-[5-(1-hydroxytridecyl)oxolan-2-yl]butyl}oxolan-2-yl)-2-hydroxyheptyl]-5-methyl-5h-furan-2-one

3-[7-(5-{1,4-dihydroxy-4-[5-(1-hydroxytridecyl)oxolan-2-yl]butyl}oxolan-2-yl)-2-hydroxyheptyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-9-[(2s,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-9-[(2s,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,8s)-1,8-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,8s)-1,8-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(2r,8r,13r)-8,13-dihydroxy-13-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-1-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]tridecan-2-yl acetate

(2r,8r,13r)-8,13-dihydroxy-13-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-1-[(5s)-5-methyl-2-oxo-5h-furan-3-yl]tridecan-2-yl acetate

C37H66O8 (638.4757)


   

3-{13-[5'-(1,4-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

3-{13-[5'-(1,4-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-5-methyl-3-[(2r,10r,13r)-2,10,13-trihydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2r,10r,13r)-2,10,13-trihydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

(2s)-3-hydroxy-2-[(1-hydroxy-2-{[(3r)-1-hydroxy-14-methyl-3-{[(4e)-13-methyltetradec-4-enoyl]oxy}pentadecylidene]amino}ethylidene)amino]propanoic acid

(2s)-3-hydroxy-2-[(1-hydroxy-2-{[(3r)-1-hydroxy-14-methyl-3-{[(4e)-13-methyltetradec-4-enoyl]oxy}pentadecylidene]amino}ethylidene)amino]propanoic acid

C36H66N2O7 (638.487)


   

3-{13-[5'-(1,9-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

3-{13-[5'-(1,9-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-9-[(2r,5s)-5-[(1s,4s)-1,4-dihydroxy-4-[(2s,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-9-[(2r,5s)-5-[(1s,4s)-1,4-dihydroxy-4-[(2s,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-{9-[(2s,5s)-5-[(1s,4r)-4-[(2r,5r)-5-[(1s,5s)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

(5s)-3-{9-[(2s,5s)-5-[(1s,4r)-4-[(2r,5r)-5-[(1s,5s)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-{14-hydroxy-14-[5'-(1,4,7-trihydroxydecyl)-[2,2'-bioxolan]-5-yl]tetradecyl}-5-methyl-5h-furan-2-one

3-{14-hydroxy-14-[5'-(1,4,7-trihydroxydecyl)-[2,2'-bioxolan]-5-yl]tetradecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-{9-[(2s,5r)-5-[(1r,4r)-4-[(2r,5r)-5-[(1s,5s)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

(5r)-3-{9-[(2s,5r)-5-[(1r,4r)-4-[(2r,5r)-5-[(1s,5s)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(13r)-13-hydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s,5r,6s)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(13r)-13-hydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s,5r,6s)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r,13r)-13-[(2s,2's,5s,5's)-5'-[(1s,9s)-1,9-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r,13r)-13-[(2s,2's,5s,5's)-5'-[(1s,9s)-1,9-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-5-methyl-3-[(2s,8r,13s)-2,8,13-trihydroxy-13-[(2s,2's,5s,5's)-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

(5r)-5-methyl-3-[(2s,8r,13s)-2,8,13-trihydroxy-13-[(2s,2's,5s,5's)-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-{9-[(2r,5r)-5-[(1s,4r)-4-[(2r,5s)-5-[(1s,5s)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

(5r)-3-{9-[(2r,5r)-5-[(1s,4r)-4-[(2r,5s)-5-[(1s,5s)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

1-(5-methyl-2-oxo-5h-furan-3-yl)-7-[5-(1,4,5-trihydroxynonadecyl)oxolan-2-yl]heptan-2-yl acetate

1-(5-methyl-2-oxo-5h-furan-3-yl)-7-[5-(1,4,5-trihydroxynonadecyl)oxolan-2-yl]heptan-2-yl acetate

C37H66O8 (638.4757)


   

(5s)-3-{9-[(2r,5r)-5-[(1s,4s)-4-[(2r,5r)-5-[(1s,5s)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

(5s)-3-{9-[(2r,5r)-5-[(1s,4s)-4-[(2r,5r)-5-[(1s,5s)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(3s,5s)-5-{7-[(2r,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]heptyl}-3-(2-oxopropyl)oxolan-2-one

(3s,5s)-5-{7-[(2r,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]heptyl}-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-11-[(2s,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxynonyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxyundecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-11-[(2s,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxynonyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxyundecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r,13r)-2,13-dihydroxy-13-[(2r,2'r,4r,5s,5'r)-4-hydroxy-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r,13r)-2,13-dihydroxy-13-[(2r,2'r,4r,5s,5'r)-4-hydroxy-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-9-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-9-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-5-methyl-3-[(2r,8r,13r)-2,8,13-trihydroxy-13-[(2r,2's,5r,5'r)-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2r,8r,13r)-2,8,13-trihydroxy-13-[(2r,2's,5r,5'r)-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2s)-9-[(2r,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5s)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s)-9-[(2r,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5s)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(3r,13r)-13-[(2r,2's,5s,5's)-5'-[(1s,5r)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-3,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5r)-3-[(3r,13r)-13-[(2r,2's,5s,5's)-5'-[(1s,5r)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-3,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(3r,5r)-5-{7-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]heptyl}-3-(2-oxopropyl)oxolan-2-one

(3r,5r)-5-{7-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]heptyl}-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2s,13r)-2,13-dihydroxy-13-[(2r,2'r,4r,5s,5'r)-4-hydroxy-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2s,13r)-2,13-dihydroxy-13-[(2r,2'r,4r,5s,5'r)-4-hydroxy-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2s)-2-hydroxy-9-[(2s,2's,5r,5'r)-5'-[(1r,4s,5r)-1,4,5-trihydroxypentadecyl]-[2,2'-bioxolan]-5-yl]nonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2s)-2-hydroxy-9-[(2s,2's,5r,5'r)-5'-[(1r,4s,5r)-1,4,5-trihydroxypentadecyl]-[2,2'-bioxolan]-5-yl]nonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r,13r)-13-[(2s,2's,5s,5's)-5'-[(1s,8s)-1,8-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r,13r)-13-[(2s,2's,5s,5's)-5'-[(1s,8s)-1,8-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-{9-[(2s,5r)-5-[(1r,4s)-4-[(2r,5r)-5-[(1s,5r)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

(5s)-3-{9-[(2s,5r)-5-[(1r,4s)-4-[(2r,5r)-5-[(1s,5r)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]nonyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(13r)-13-[(2r,2'r,3r,3'r,5r,5'r)-3,3'-dihydroxy-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]-13-hydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(13r)-13-[(2r,2'r,3r,3'r,5r,5'r)-3,3'-dihydroxy-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]-13-hydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-2-hydroxy-9-[(2r,2's,5s,5'r)-5'-[(1r,4r,5s)-1,4,5-trihydroxypentadecyl]-[2,2'-bioxolan]-5-yl]nonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-2-hydroxy-9-[(2r,2's,5s,5'r)-5'-[(1r,4r,5s)-1,4,5-trihydroxypentadecyl]-[2,2'-bioxolan]-5-yl]nonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-{2,13-dihydroxy-13-[4-hydroxy-5'-(1-hydroxyundecyl)-[2,2'-bioxolan]-5-yl]tridecyl}-5-methyl-5h-furan-2-one

3-{2,13-dihydroxy-13-[4-hydroxy-5'-(1-hydroxyundecyl)-[2,2'-bioxolan]-5-yl]tridecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-9-[(2r,5s)-5-[(1s,4s)-4-[(2s,5r,6s)-6-decyl-5-hydroxyoxan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-9-[(2r,5s)-5-[(1s,4s)-4-[(2s,5r,6s)-6-decyl-5-hydroxyoxan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(13r)-13-[(2r,2'r,5r,5'r)-3,3'-dihydroxy-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]-13-hydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(13r)-13-[(2r,2'r,5r,5'r)-3,3'-dihydroxy-5'-[(1s)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]-13-hydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2s)-9-[(2s,5r)-5-[(1r,4s)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s)-9-[(2s,5r)-5-[(1r,4s)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(3s,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-3,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5r)-3-[(3s,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-3,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2r)-9-[(2s,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2r)-9-[(2s,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-9-[(5s)-5-[(4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-9-[(5s)-5-[(4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r,8r)-8-[(2r,2'r,5r,5's)-5'-[(5s,6s)-5,6-dihydroxyhexadecyl]-[2,2'-bioxolan]-5-yl]-2,8-dihydroxyoctyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r,8r)-8-[(2r,2'r,5r,5's)-5'-[(5s,6s)-5,6-dihydroxyhexadecyl]-[2,2'-bioxolan]-5-yl]-2,8-dihydroxyoctyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2s,13r)-2,13-dihydroxy-13-[(2r,2'r,4r,5s,5'r)-4-hydroxy-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2s,13r)-2,13-dihydroxy-13-[(2r,2'r,4r,5s,5'r)-4-hydroxy-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,4s)-1,4-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,4s)-1,4-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2r)-9-[(2s,5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2r)-9-[(2s,5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-[11-(5-{1,4-dihydroxy-4-[5-(1-hydroxynonyl)oxolan-2-yl]butyl}oxolan-2-yl)-2-hydroxyundecyl]-5-methyl-5h-furan-2-one

3-[11-(5-{1,4-dihydroxy-4-[5-(1-hydroxynonyl)oxolan-2-yl]butyl}oxolan-2-yl)-2-hydroxyundecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

n-[(2r,3r,26r,27r)-3,26-bis(acetyloxy)-27-[(1-hydroxyethylidene)amino]-11-oxooctacosan-2-yl]ethanimidic acid

n-[(2r,3r,26r,27r)-3,26-bis(acetyloxy)-27-[(1-hydroxyethylidene)amino]-11-oxooctacosan-2-yl]ethanimidic acid

C36H66N2O7 (638.487)


   

(5r)-3-[(2s,13r)-13-[(2s,2'r,5r,5's)-5'-[(1r,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s,13r)-13-[(2s,2'r,5r,5's)-5'-[(1r,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2s)-9-[(2r,5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s)-9-[(2r,5r)-5-[(1r,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-(9-{5-[(1r,4r)-4-{5-[(1r)-1,5-dihydroxyundecyl]oxolan-2-yl}-1,4-dihydroxybutyl]oxolan-2-yl}nonyl)-5-methyl-5h-furan-2-one

3-(9-{5-[(1r,4r)-4-{5-[(1r)-1,5-dihydroxyundecyl]oxolan-2-yl}-1,4-dihydroxybutyl]oxolan-2-yl}nonyl)-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-{2-hydroxy-9-[5'-(1,4,5-trihydroxypentadecyl)-[2,2'-bioxolan]-5-yl]nonyl}-5-methyl-5h-furan-2-one

3-{2-hydroxy-9-[5'-(1,4,5-trihydroxypentadecyl)-[2,2'-bioxolan]-5-yl]nonyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(3s,5r)-5-{7-[(2s,5r)-5-[(1r,4s)-1,4-dihydroxy-4-[(2s,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]heptyl}-3-(2-oxopropyl)oxolan-2-one

(3s,5r)-5-{7-[(2s,5r)-5-[(1r,4s)-1,4-dihydroxy-4-[(2s,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]heptyl}-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2s)-9-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5s)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s)-9-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5s)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2s)-7-[(2r,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxyheptyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s)-7-[(2r,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxyheptyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(13r)-13-[(2r,2'r,4r,5s,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-4-hydroxy-[2,2'-bioxolan]-5-yl]-13-hydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(13r)-13-[(2r,2'r,4r,5s,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-4-hydroxy-[2,2'-bioxolan]-5-yl]-13-hydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(10r,13r)-13-[(2r,2's,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-10,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(10r,13r)-13-[(2r,2's,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-10,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(8s,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-8,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5r)-3-[(8s,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-8,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-5-methyl-3-[(2s,10r,13r)-2,10,13-trihydroxy-13-[(2s,2'r,5s,5's)-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2s,10r,13r)-2,10,13-trihydroxy-13-[(2s,2'r,5s,5's)-5'-[(1r)-1-hydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5h-furan-2-one

C37H66O8 (638.4757)


   

3-(9-{5-[(1r,4r)-4-[(2r,5r)-5-[(1s)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl}nonyl)-5-methyl-5h-furan-2-one

3-(9-{5-[(1r,4r)-4-[(2r,5r)-5-[(1s)-1,5-dihydroxyundecyl]oxolan-2-yl]-1,4-dihydroxybutyl]oxolan-2-yl}nonyl)-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-[9-(5-{1,4-dihydroxy-4-[5-(1-hydroxyundecyl)oxolan-2-yl]butyl}oxolan-2-yl)-3-hydroxynonyl]-5-methyl-5h-furan-2-one

3-[9-(5-{1,4-dihydroxy-4-[5-(1-hydroxyundecyl)oxolan-2-yl]butyl}oxolan-2-yl)-3-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(3s)-9-[(2s,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2s,5s)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-3-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(3s)-9-[(2s,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2s,5s)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-3-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(13r)-13-hydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(13r)-13-hydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-{13-[5'-(1,6-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-8,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

3-{13-[5'-(1,6-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-8,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(13r)-13-hydroxy-13-[(2s,2'r,5s,5's)-5'-[(1s,5r,6s)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5r)-3-[(13r)-13-hydroxy-13-[(2s,2'r,5s,5's)-5'-[(1s,5r,6s)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(3s)-9-[(2s,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2s,5s)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-3-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(3s)-9-[(2s,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2s,5s)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-3-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-{13-[5'-(1,7-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

3-{13-[5'-(1,7-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-2,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-5-{5-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]butyl]oxolan-2-yl]pentyl}-3-(2-oxopropyl)oxolan-2-one

(5r)-5-{5-[(2r,5s)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]butyl]oxolan-2-yl]pentyl}-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


   

3-{13-[5'-(1,5-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-3,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

3-{13-[5'-(1,5-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-3,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-9-[(2s,5s)-5-[(1s,4s)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-9-[(2s,5s)-5-[(1s,4s)-1,4-dihydroxy-4-[(2r,5r)-5-[(1s)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(3s,13r)-13-[(2s,2'r,5s,5's)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-3,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5r)-3-[(3s,13r)-13-[(2s,2'r,5s,5's)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-3,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

3-{13-[5'-(1,5-dihydroxyundecyl)-4-hydroxy-[2,2'-bioxolan]-5-yl]-13-hydroxytridecyl}-5-methyl-5h-furan-2-one

3-{13-[5'-(1,5-dihydroxyundecyl)-4-hydroxy-[2,2'-bioxolan]-5-yl]-13-hydroxytridecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

n-[3,26-bis(acetyloxy)-27-[(1-hydroxyethylidene)amino]-11-oxooctacosan-2-yl]ethanimidic acid

n-[3,26-bis(acetyloxy)-27-[(1-hydroxyethylidene)amino]-11-oxooctacosan-2-yl]ethanimidic acid

C36H66N2O7 (638.487)


   

(5s)-3-[(2r,8s)-8-[(2s,2's,5s,5'r)-5'-(5,6-dihydroxyhexadecyl)-[2,2'-bioxolan]-5-yl]-2,8-dihydroxyoctyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r,8s)-8-[(2s,2's,5s,5'r)-5'-(5,6-dihydroxyhexadecyl)-[2,2'-bioxolan]-5-yl]-2,8-dihydroxyoctyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(8r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-8,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

(5r)-3-[(8r,13r)-13-[(2r,2'r,5r,5'r)-5'-[(1s,5s)-1,5-dihydroxyundecyl]-[2,2'-bioxolan]-5-yl]-8,13-dihydroxytridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(2s)-9-[(2r,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s)-9-[(2r,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]-2-hydroxynonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(13r)-13-hydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s,5s,6r)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(13r)-13-hydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s,5s,6r)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(3s,5r)-5-{7-[(2r,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]heptyl}-3-(2-oxopropyl)oxolan-2-one

(3s,5r)-5-{7-[(2r,5r)-5-[(1s,4r)-1,4-dihydroxy-4-[(2r,5r)-5-[(1r)-1-hydroxyundecyl]oxolan-2-yl]butyl]oxolan-2-yl]heptyl}-3-(2-oxopropyl)oxolan-2-one

C37H66O8 (638.4757)


   

5-methyl-3-{2,10,13-trihydroxy-13-[5'-(1-hydroxyundecyl)-[2,2'-bioxolan]-5-yl]tridecyl}-5h-furan-2-one

5-methyl-3-{2,10,13-trihydroxy-13-[5'-(1-hydroxyundecyl)-[2,2'-bioxolan]-5-yl]tridecyl}-5h-furan-2-one

C37H66O8 (638.4757)


   

3-{13-[5'-(1,5-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-10,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

3-{13-[5'-(1,5-dihydroxyundecyl)-[2,2'-bioxolan]-5-yl]-10,13-dihydroxytridecyl}-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(2r)-2-hydroxy-9-[(2s,2's,5r,5'r)-5'-[(1r,4r,5r)-1,4,5-trihydroxypentadecyl]-[2,2'-bioxolan]-5-yl]nonyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r)-2-hydroxy-9-[(2s,2's,5r,5'r)-5'-[(1r,4r,5r)-1,4,5-trihydroxypentadecyl]-[2,2'-bioxolan]-5-yl]nonyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

5-methyl-3-{2,8,13-trihydroxy-13-[5'-(1-hydroxyundecyl)-[2,2'-bioxolan]-5-yl]tridecyl}-5h-furan-2-one

5-methyl-3-{2,8,13-trihydroxy-13-[5'-(1-hydroxyundecyl)-[2,2'-bioxolan]-5-yl]tridecyl}-5h-furan-2-one

C37H66O8 (638.4757)


   

(5r)-3-[(13s)-13-hydroxy-13-[(2s,2's,5s,5'r)-5'-[(1s,5s,6s)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5r)-3-[(13s)-13-hydroxy-13-[(2s,2's,5s,5'r)-5'-[(1s,5s,6s)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)


   

(5s)-3-[(13r)-13-hydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s,5r,6r)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(13r)-13-hydroxy-13-[(2r,2'r,5r,5'r)-5'-[(1s,5r,6r)-1,5,6-trihydroxyundecyl]-[2,2'-bioxolan]-5-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H66O8 (638.4757)