Exact Mass: 634.329456

Exact Mass Matches: 634.329456

Found 205 metabolites which its exact mass value is equals to given mass value 634.329456, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Rescinnamine

methyl (1R,15S,17R,18R,19S,20S)-6,18-dimethoxy-17-{[3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy}-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4(9),5,7-tetraene-19-carboxylate

C35H42N2O9 (634.2890162)


Rescinnamine is only found in individuals that have used or taken this drug. It is an angiotensin-converting enzyme inhibitor used as an antihypertensive drug. It is an alkaloid obtained from Rauwolfia serpentina and other species of Rauwolfia. [Wikipedia]Rescinnamine Binds to and inhibits the angiotensin converting enzyme. Rescinnamine competes with angiotensin I for binding at the angiotensin-converting enzyme, blocking the conversion of angiotensin I to angiotensin II. Inhibition of ACE results in decreased plasma angiotensin II. As angiotensin II is a vasoconstrictor and a negative-feedback mediator for renin activity, lower concentrations result in a decrease in blood pressure and stimulation of baroreceptor reflex mechanisms, which leads to decreased vasopressor activity and to decreased aldosterone secretion. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent Rescinnamine is an odorless white to cream colored crystalline powder. (NTP, 1992) Rescinnamine is a methyl ester, an organic heteropentacyclic compound and an indole alkaloid. It has a role as an antihypertensive agent. It derives from a hydride of a yohimban. Rescinnamine is a natural product found in Vinca major, Aspidosperma excelsum, and other organisms with data available.

   

(3b,20R,22R)-3,20,27-Trihydroxy-1-oxowitha-5,24-dienolide 3-glucoside

6-[1-(2,15-dimethyl-3-oxo-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl)-1-hydroxyethyl]-3-(hydroxymethyl)-4-methyl-5,6-dihydro-2H-pyran-2-one

C34H50O11 (634.335295)


(3b,20R,22R)-3,20,27-Trihydroxy-1-oxowitha-5,24-dienolide 3-glucoside is found in fruits. (3b,20R,22R)-3,20,27-Trihydroxy-1-oxowitha-5,24-dienolide 3-glucoside is a constituent of Physalis peruviana (Cape gooseberry).

   

Digitoxigenin bisdigitoxide

4-[5-({5-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-4-hydroxy-6-methyloxan-2-yl}oxy)-11-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]-2,5-dihydrofuran-2-one

C35H54O10 (634.3716784)


   

2-(4-Hydroxy-1,3-thiazol-3-ium-3-yl)ethyl [2-(octadecylcarbamoyloxymethyl)oxolan-2-yl]methyl phosphate

3-(2-((2-Octadecylaminocarbonyloxymethyltetrahydro-2-furanylmethoxy)hydroxyphosphinyloxy)ethyl)thiazolium hydroxide inner salt-4-oxide

C30H55N2O8PS (634.341656)


   

PA(10:0/5-iso PGF2VI)

[(2R)-3-(decanoyloxy)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}propoxy]phosphonic acid

C31H55O11P (634.348181)


PA(10:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/5-iso PGF2VI), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/10:0)

[(2R)-2-(decanoyloxy)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}propoxy]phosphonic acid

C31H55O11P (634.348181)


PA(5-iso PGF2VI/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/10:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C31H55O11P (634.348181)


PA(8:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/PGF2alpha), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/8:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C31H55O11P (634.348181)


PA(PGF2alpha/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/8:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/PGE1)

[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-(octanoyloxy)propoxy]phosphonic acid

C31H55O11P (634.348181)


PA(8:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/PGE1), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/8:0)

[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-(octanoyloxy)propoxy]phosphonic acid

C31H55O11P (634.348181)


PA(PGE1/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/8:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/PGD1)

[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-(octanoyloxy)propoxy]phosphonic acid

C31H55O11P (634.348181)


PA(8:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/PGD1), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/8:0)

[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-(octanoyloxy)propoxy]phosphonic acid

C31H55O11P (634.348181)


PA(PGD1/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/8:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   
   
   
   
   
   

3,6,9,12,15,18,21,24,27,30,33,36,39-Tridecaoxahentetracontane-1,41-diol

3,6,9,12,15,18,21,24,27,30,33,36,39-Tridecaoxahentetracontane-1,41-diol

C28H58O15 (634.3775518)


   

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

C35H54O10 (634.3716784)


   

jaspamide O

jaspamide O

C35H46N4O7 (634.3366326)


A cyclodepsipeptide isolated from Jaspis splendens. A derivative of jaspamide, it has been shown to exhibit cytotoxic and microfilament disruption activity.

   
   
   
   

3beta-[beta-glucopyranosyloxyuronic acid]-16-hydroxy-5alpha,14beta-poriferast-16-ene-15,23-dione|pandaroside B

3beta-[beta-glucopyranosyloxyuronic acid]-16-hydroxy-5alpha,14beta-poriferast-16-ene-15,23-dione|pandaroside B

C35H54O10 (634.3716784)


   

ajugatakasin B

ajugatakasin B

C34H50O11 (634.335295)


A diterpene lactone isolated from the whole plants of Ajuga ciliata that is ajugatakasin A in which both of the 2-methylbutenoate ester goups have been hydrogenated to the corresponding 2-methylbutanoates.

   
   

3-O-??-D-Xylopyranosyl-esculentic acid

3-O-??-D-Xylopyranosyl-esculentic acid

C35H54O10 (634.3716784)


   
   
   

(3R,5beta,16S,17S,20R,22S,23S,24S,25S)-16,23:16,27:22,25-triepoxy-17-hydroxystigmast-7-en-3-yl beta-D-glucopyranoside|ajugasalicioside A

(3R,5beta,16S,17S,20R,22S,23S,24S,25S)-16,23:16,27:22,25-triepoxy-17-hydroxystigmast-7-en-3-yl beta-D-glucopyranoside|ajugasalicioside A

C35H54O10 (634.3716784)


   

cherimolacyclopeptide E

cherimolacyclopeptide E

C33H42N6O7 (634.3114822)


   

didigitoxosyldigitoxigenin|digitoxigen O-[2,6-dideoxy-beta-D-ribo-hexopyranosyl]-(1->4)-(2,6-dideoxy-beta-D-ribo-hexopyranoside)|digitoxigenin 2,6-dideoxy-4-O-[2,6-dideoxy-beta-D-ribo-hexopyranosyl]-beta-D-ribo-hexopyranoside|digitoxigenin 3-O-beta-D-digitoxosyl-(1<*>4)-beta-D-digitoxoside|digitoxigenin bis-digitoxose|digitoxigenin bisdigitoxoside|digitoxigenin-3-O-beta-D-digitoxosyl-(1->4)-beta-D-digitoxoside

didigitoxosyldigitoxigenin|digitoxigen O-[2,6-dideoxy-beta-D-ribo-hexopyranosyl]-(1->4)-(2,6-dideoxy-beta-D-ribo-hexopyranoside)|digitoxigenin 2,6-dideoxy-4-O-[2,6-dideoxy-beta-D-ribo-hexopyranosyl]-beta-D-ribo-hexopyranoside|digitoxigenin 3-O-beta-D-digitoxosyl-(1<*>4)-beta-D-digitoxoside|digitoxigenin bis-digitoxose|digitoxigenin bisdigitoxoside|digitoxigenin-3-O-beta-D-digitoxosyl-(1->4)-beta-D-digitoxoside

C35H54O10 (634.3716784)


   

caudatin 3-O-beta-cymaropyranoside

caudatin 3-O-beta-cymaropyranoside

C35H54O10 (634.3716784)


   

3beta-O-beta-D-glucopyranosyloxy-16beta,26,29-trihydroxy-5alpha-stigmasta-7,9(11),24(28)Z-trien-6-one

3beta-O-beta-D-glucopyranosyloxy-16beta,26,29-trihydroxy-5alpha-stigmasta-7,9(11),24(28)Z-trien-6-one

C35H54O10 (634.3716784)


   
   

11,12,11,12-tetradehydro-[11,18]bi[12,23-seco-24-nor-strychnidine]-10,10-dione|Sangucin|sungucine

11,12,11,12-tetradehydro-[11,18]bi[12,23-seco-24-nor-strychnidine]-10,10-dione|Sangucin|sungucine

C42H42N4O2 (634.3307592)


   

(22R)-27-hydroxy-7alpha-methoxy-1-oxowitha-3,5,24-trienolide

(22R)-27-hydroxy-7alpha-methoxy-1-oxowitha-3,5,24-trienolide

C35H54O10 (634.3716784)


   
   

3,8,14,20-Tetraacetyl-7-(2-methylbutanoyl)-synadenol

3,8,14,20-Tetraacetyl-7-(2-methylbutanoyl)-synadenol

C33H46O12 (634.2989116)


   
   

(3beta,5alpha,11alpha,12beta,14beta)-12-acetoxy-3-[(2,6-dideoxy-4-O-methyl-beta-D-arabino-hexopyranosyl)oxy]-20-oxo-8,14-epoxypregnan-11-yl 2-methylbutanoate|3-O-olivomosyl-11-O-(2-methylbutanoyl)-12beta-O-acetyl-tenacigenin B|tenacigenoside B

(3beta,5alpha,11alpha,12beta,14beta)-12-acetoxy-3-[(2,6-dideoxy-4-O-methyl-beta-D-arabino-hexopyranosyl)oxy]-20-oxo-8,14-epoxypregnan-11-yl 2-methylbutanoate|3-O-olivomosyl-11-O-(2-methylbutanoyl)-12beta-O-acetyl-tenacigenin B|tenacigenoside B

C35H54O10 (634.3716784)


   
   

23(R),24(S),25(R),26(S)-16beta/23,23/26,24/25-triepoxy-6alpha,26-dihydroxy-9,9-cyclolanosta-3-O-beta-xyloside|bicusposide C

23(R),24(S),25(R),26(S)-16beta/23,23/26,24/25-triepoxy-6alpha,26-dihydroxy-9,9-cyclolanosta-3-O-beta-xyloside|bicusposide C

C35H54O10 (634.3716784)


   

2alpha,3beta,23-trihydroxy-30-norolean-12-en-28-oic acid beta-D-glucopyranosyl ester|2alpha,3beta,23-trihydroxy-30-norolean-12-en-28-oic acid monoglycoside|Mutangsaponin A

2alpha,3beta,23-trihydroxy-30-norolean-12-en-28-oic acid beta-D-glucopyranosyl ester|2alpha,3beta,23-trihydroxy-30-norolean-12-en-28-oic acid monoglycoside|Mutangsaponin A

C35H54O10 (634.3716784)


   

24-Hydroxy-15,16-seco-cycloart-7-en 3-O-xyloside

24-Hydroxy-15,16-seco-cycloart-7-en 3-O-xyloside

C35H54O10 (634.3716784)


   
   

3beta-[(alpha-L-arabinopyranosyl)oxy]-11alpha,12alpha-epoxy-13beta,16alpha,23-trihydroxyoleanan-28-oic acid gamma-lactone

3beta-[(alpha-L-arabinopyranosyl)oxy]-11alpha,12alpha-epoxy-13beta,16alpha,23-trihydroxyoleanan-28-oic acid gamma-lactone

C35H54O10 (634.3716784)


   
   
   
   
   

Cimicifugoside H2

(1S,3R,6S,8R,12R,15R,16R,18S)-15-[(2R,5R)-5,6-dihydroxy-6-methyl-4-oxoheptan-2-yl]-18-hydroxy-7,7,12,16-tetramethyl-6-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxypentacyclo[9.7.0.01,3.03,8.012,16]octadec-10-en-14-one

C35H54O10 (634.3716784)


Cimicifugoside h 2 is a triterpenoid. Cimicifugoside H-2 is a natural product found in Actaea elata, Actaea cimicifuga, and other organisms with data available.

   

Olean-12-ene-23,28-dioic acid, 16-hydroxy-3-(beta-D-xylopyranosyloxy)-, (3beta,5xi,9xi,16alpha)

Olean-12-ene-23,28-dioic acid, 16-hydroxy-3-(beta-D-xylopyranosyloxy)-, (3beta,5xi,9xi,16alpha)-

C35H54O10 (634.3716784)


NCGC00347421-02_C35H54O10

   

Anaprel

NCGC00179585-04_C35H42N2O9_Cinnaloid

C35H42N2O9 (634.2890162)


   

Rescinnamine

methyl (1R,15S,17R,18R,19S,20S)-6,18-dimethoxy-17-{[3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy}-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4(9),5,7-tetraene-19-carboxylate

C35H42N2O9 (634.2890162)


Rescinnamine is an odorless white to cream colored crystalline powder. (NTP, 1992) Rescinnamine is a methyl ester, an organic heteropentacyclic compound and an indole alkaloid. It has a role as an antihypertensive agent. It derives from a hydride of a yohimban. Rescinnamine is a natural product found in Vinca major, Aspidosperma excelsum, and other organisms with data available. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent

   
   

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid_major

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid_major

C35H54O10 (634.3716784)


   

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid_minor

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid_minor

C35H54O10 (634.3716784)


   

Phe Pro Trp Trp

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-phenylpropanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C36H38N6O5 (634.2903537999999)


   

Phe Trp Pro Trp

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanoic acid

C36H38N6O5 (634.2903537999999)


   

Phe Trp Trp Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidine-2-carboxylic acid

C36H38N6O5 (634.2903537999999)


   

His His Arg Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanoic acid

C29H38N12O5 (634.3087978)


   

His His Trp Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanoic acid

C29H38N12O5 (634.3087978)


   

His Arg His Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-5-carbamimidamidopentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C29H38N12O5 (634.3087978)


   

His Arg Trp His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C29H38N12O5 (634.3087978)


   

His Trp His Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-5-carbamimidamidopentanoic acid

C29H38N12O5 (634.3087978)


   

His Trp Arg His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanamido]-3-(1H-imidazol-4-yl)propanoic acid

C29H38N12O5 (634.3087978)


   

Ile Met Trp Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-4-(methylsulfanyl)butanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C33H42N6O5S (634.2937242)


   

Ile Trp Met Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanamido]-3-(1H-indol-3-yl)propanoic acid

C33H42N6O5S (634.2937242)


   

Ile Trp Trp Met

(2S)-2-[(2S)-2-[(2S)-2-[(2S,3S)-2-amino-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanoic acid

C33H42N6O5S (634.2937242)


   

Leu Met Trp Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-4-(methylsulfanyl)butanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C33H42N6O5S (634.2937242)


   

Leu Trp Met Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanamido]-3-(1H-indol-3-yl)propanoic acid

C33H42N6O5S (634.2937242)


   

Leu Trp Trp Met

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanoic acid

C33H42N6O5S (634.2937242)


   

Met Ile Trp Trp

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-4-(methylsulfanyl)butanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C33H42N6O5S (634.2937242)


   

Met Leu Trp Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-(methylsulfanyl)butanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C33H42N6O5S (634.2937242)


   

Met Trp Ile Trp

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-4-(methylsulfanyl)butanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C33H42N6O5S (634.2937242)


   

Met Trp Leu Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-(methylsulfanyl)butanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C33H42N6O5S (634.2937242)


   

Met Trp Trp Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-(methylsulfanyl)butanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanoic acid

C33H42N6O5S (634.2937242)


   

Met Trp Trp Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-4-(methylsulfanyl)butanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanoic acid

C33H42N6O5S (634.2937242)


   

Pro Phe Trp Trp

(2S)-3-(1H-indol-3-yl)-2-[(2S)-3-(1H-indol-3-yl)-2-[(2S)-3-phenyl-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]propanamido]propanoic acid

C36H38N6O5 (634.2903537999999)


   

Digitoxigenin bisdigitoxoside

Digitoxigenin bisdigitoxoside

C35H54O10 (634.3716784)


   

Pro Trp Phe Trp

(2S)-3-(1H-indol-3-yl)-2-[(2S)-2-[(2S)-3-(1H-indol-3-yl)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]-3-phenylpropanamido]propanoic acid

C36H38N6O5 (634.2903537999999)


   

Pro Trp Trp Phe

(2S)-2-[(2S)-3-(1H-indol-3-yl)-2-[(2S)-3-(1H-indol-3-yl)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]propanamido]-3-phenylpropanoic acid

C36H38N6O5 (634.2903537999999)


   

Arg His His Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanoic acid

C29H38N12O5 (634.3087978)


   

Arg His Trp His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C29H38N12O5 (634.3087978)


   

Arg Trp His His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C29H38N12O5 (634.3087978)


   

Trp Phe Pro Trp

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-phenylpropanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanoic acid

C36H38N6O5 (634.2903537999999)


   

Trp Phe Trp Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-phenylpropanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidine-2-carboxylic acid

C36H38N6O5 (634.2903537999999)


   

Trp His His Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-5-carbamimidamidopentanoic acid

C29H38N12O5 (634.3087978)


   

Trp His Arg His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-imidazol-4-yl)propanamido]-5-carbamimidamidopentanamido]-3-(1H-imidazol-4-yl)propanoic acid

C29H38N12O5 (634.3087978)


   

Trp Ile Met Trp

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-4-(methylsulfanyl)butanamido]-3-(1H-indol-3-yl)propanoic acid

C33H42N6O5S (634.2937242)


   

Trp Ile Trp Met

(2S)-2-[(2S)-2-[(2S,3S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanoic acid

C33H42N6O5S (634.2937242)


   

Trp Leu Met Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-4-(methylsulfanyl)butanamido]-3-(1H-indol-3-yl)propanoic acid

C33H42N6O5S (634.2937242)


   

Trp Leu Trp Met

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanoic acid

C33H42N6O5S (634.2937242)


   

Trp Met Ile Trp

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanamido]-3-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C33H42N6O5S (634.2937242)


   

Trp Met Leu Trp

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanamido]-4-methylpentanamido]-3-(1H-indol-3-yl)propanoic acid

C33H42N6O5S (634.2937242)


   

Trp Met Trp Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanoic acid

C33H42N6O5S (634.2937242)


   

Trp Met Trp Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanoic acid

C33H42N6O5S (634.2937242)


   

Trp Pro Phe Trp

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-phenylpropanamido]-3-(1H-indol-3-yl)propanoic acid

C36H38N6O5 (634.2903537999999)


   

Trp Pro Trp Phe

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-(1H-indol-3-yl)propanamido]-3-phenylpropanoic acid

C36H38N6O5 (634.2903537999999)


   

Trp Arg His His

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-5-carbamimidamidopentanamido]-3-(1H-imidazol-4-yl)propanamido]-3-(1H-imidazol-4-yl)propanoic acid

C29H38N12O5 (634.3087978)


   

Trp Trp Phe Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-phenylpropanoyl]pyrrolidine-2-carboxylic acid

C36H38N6O5 (634.2903537999999)


   

Trp Trp Ile Met

(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-3-methylpentanamido]-4-(methylsulfanyl)butanoic acid

C33H42N6O5S (634.2937242)


   

Trp Trp Leu Met

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-4-methylpentanamido]-4-(methylsulfanyl)butanoic acid

C33H42N6O5S (634.2937242)


   

Trp Trp Met Ile

(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanamido]-3-methylpentanoic acid

C33H42N6O5S (634.2937242)


   

Trp Trp Met Leu

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanamido]-4-methylpentanoic acid

C33H42N6O5S (634.2937242)


   

Trp Trp Pro Phe

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-(1H-indol-3-yl)propanamido]-3-(1H-indol-3-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-phenylpropanoic acid

C36H38N6O5 (634.2903537999999)


   

DIKEM

Asp Ile Lys Glu Met

C26H46N6O10S (634.2995976)


   

TVETW

Thr Val Glu Thr Trp

C29H42N6O10 (634.2962272)


   

VMMVR

Val-Met-Met-Val-Arg

C26H50N8O6S2 (634.329456)


   

Pandaroside B

3beta-[beta-glucopyranosyloxyuronic acid]-16-hydroxy-5alpha,14beta-poriferast-16-ene-15,23-dione

C35H54O10 (634.3716784)


   

1,4,7-Heptanetriol

6-[1-(2,15-dimethyl-3-oxo-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-14-yl)-1-hydroxyethyl]-3-(hydroxymethyl)-4-methyl-5,6-dihydro-2H-pyran-2-one

C34H50O11 (634.335295)


   

PKDdiA-PA

1-hexadecanoyl-2-(9-oxo-11-carboxy-10E-undecenoyl)-sn-glycero-3-phosphate

C31H55O11P (634.348181)


   

12-beta-acetoxy-3beta,15alpha,16alpha,24alpha-tetrahydroxy25,26,27-trinor-16,24-cyclo-cycloart-7-en-23-one-3-O-beta-D-xylopyranoside

12-beta-acetoxy-3beta,15alpha,16alpha,24alpha-tetrahydroxy25,26,27-trinor-16,24-cyclo-9beta,19-cyclo-lanost-7-en-23-one-3-O-beta-D-xylopyranoside

C34H50O11 (634.335295)


   

1,4-bis(diethoxyphosphorylmethyl)-2,5-dioctoxybenzene

1,4-bis(diethoxyphosphorylmethyl)-2,5-dioctoxybenzene

C32H60O8P2 (634.3763220000001)


   

(R,R)-(-)N,N-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) chloride

(R,R)-(-)N,N-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) chloride

C36H52ClMnN2O2 (634.3097562)


   

2-Pyrrolidinyl-3-acetyl Desmorpholinylrocuronium Bromide

2-Pyrrolidinyl-3-acetyl Desmorpholinylrocuronium Bromide

C34H55BrN2O4 (634.3344969999999)


   

2-(4-Hydroxy-1,3-thiazol-3-ium-3-yl)ethyl [2-(octadecylcarbamoyloxymethyl)oxolan-2-yl]methyl phosphate

2-(4-Hydroxy-1,3-thiazol-3-ium-3-yl)ethyl [2-(octadecylcarbamoyloxymethyl)oxolan-2-yl]methyl phosphate

C30H55N2O8PS (634.341656)


   

caudatin-3-O-beta-cymaropyranoside

caudatin-3-O-beta-cymaropyranoside

C35H54O10 (634.3716784)


A steroid glycoside that is 3,8,12,14,17-pentahydroxypregn-5-en-20-one esterified at position 12 by (2E)-3,4-dimethylpent-2-enoic acid and glycosylated at the 3beta-hydroxy group by beta-cymaropyranose (the 3beta,12beta,14beta,17alpha stereoisomer). It is isolated from the roots of Cynanchum auriculatum and displays antineoplastic activity.

   

Card-20(22)-enolide, 3-[[2,6-dideoxy-4-O-(2,6-dideoxy-beta-D-ribo-hexopyranosyl)-beta-D-ribo-hexopyranosyl]oxy]-14-hydroxy-, (3beta,5beta)-

Card-20(22)-enolide, 3-[[2,6-dideoxy-4-O-(2,6-dideoxy-beta-D-ribo-hexopyranosyl)-beta-D-ribo-hexopyranosyl]oxy]-14-hydroxy-, (3beta,5beta)-

C35H54O10 (634.3716784)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides

   
   
   
   
   
   
   

PA(10:0/5-iso PGF2VI)

PA(10:0/5-iso PGF2VI)

C31H55O11P (634.348181)


   

PA(5-iso PGF2VI/10:0)

PA(5-iso PGF2VI/10:0)

C31H55O11P (634.348181)


   

2-[[(2R)-3-acetyloxy-2-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-acetyloxy-2-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C30H53NO11P+ (634.3356057999999)


   

2-[[(2R)-2-acetyloxy-3-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-acetyloxy-3-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C30H53NO11P+ (634.3356057999999)


   

2-[[(2R)-3-acetyloxy-2-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-acetyloxy-2-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C30H53NO11P+ (634.3356057999999)


   

2-[[(2R)-2-acetyloxy-3-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-acetyloxy-3-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C30H53NO11P+ (634.3356057999999)


   

2-[[(2R)-3-acetyloxy-2-[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-acetyloxy-2-[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C30H53NO11P+ (634.3356057999999)


   

2-[[(2R)-2-acetyloxy-3-[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-acetyloxy-3-[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C30H53NO11P+ (634.3356057999999)


   

withalongolide I

withalongolide I

C34H50O11 (634.335295)


A withanolide saponin that consists of 3-hydroxy-22,26-epoxyergosta-5,24-diene substituted by additonal hydroxy groups at positions 19 and 27, oxo groups at positions 1 and 26 and a beta-D-glucopyranosyl residue at position 3 via a glycodic linkage. It has been isolated from Physalis longifolia.

   

Pilsicainide hydrochloride hydrate

Pilsicainide hydrochloride hydrate

C34H52Cl2N4O3 (634.3416262)


D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators

   

(1R,13R,14E,19S,21S)-14-ethylidene-10-[(1R,12S,13R,14E,17R,19S,21S)-14-ethylidene-9-oxo-8,16-diazahexacyclo[11.5.2.11,8.02,7.016,19.012,21]henicosa-2,4,6,10-tetraen-17-yl]-8,16-diazahexacyclo[11.5.2.11,8.02,7.016,19.012,21]henicosa-2,4,6,10-tetraen-9-one

(1R,13R,14E,19S,21S)-14-ethylidene-10-[(1R,12S,13R,14E,17R,19S,21S)-14-ethylidene-9-oxo-8,16-diazahexacyclo[11.5.2.11,8.02,7.016,19.012,21]henicosa-2,4,6,10-tetraen-17-yl]-8,16-diazahexacyclo[11.5.2.11,8.02,7.016,19.012,21]henicosa-2,4,6,10-tetraen-9-one

C42H42N4O2 (634.3307592)


   

2-{3-[2-tert-butyl-7-(diethylamino)-4H-chromen-4-ylidene]prop-1-en-1-yl}-1-(5-carboxypentyl)-3,3-dimethyl-3H-indolium-5-sulfonate

2-{3-[2-tert-butyl-7-(diethylamino)-4H-chromen-4-ylidene]prop-1-en-1-yl}-1-(5-carboxypentyl)-3,3-dimethyl-3H-indolium-5-sulfonate

C36H46N2O6S (634.3076416)


   

(1R,13S,14E,19S,21S)-14-ethylidene-10-[(1R,12S,13R,14E,17R,19S,21S)-14-ethylidene-9-oxo-8,16-diazahexacyclo[11.5.2.11,8.02,7.016,19.012,21]henicosa-2,4,6,10-tetraen-17-yl]-8,16-diazahexacyclo[11.5.2.11,8.02,7.016,19.012,21]henicosa-2,4,6,11-tetraen-9-one

(1R,13S,14E,19S,21S)-14-ethylidene-10-[(1R,12S,13R,14E,17R,19S,21S)-14-ethylidene-9-oxo-8,16-diazahexacyclo[11.5.2.11,8.02,7.016,19.012,21]henicosa-2,4,6,10-tetraen-17-yl]-8,16-diazahexacyclo[11.5.2.11,8.02,7.016,19.012,21]henicosa-2,4,6,11-tetraen-9-one

C42H42N4O2 (634.3307592)


   

2-{3-[4-tert-butyl-7-(diethylamino)-2H-chromen-2-ylidene]prop-1-en-1-yl}-1-(5-carboxypentyl)-3,3-dimethyl-3H-indolium-5-sulfonate

2-{3-[4-tert-butyl-7-(diethylamino)-2H-chromen-2-ylidene]prop-1-en-1-yl}-1-(5-carboxypentyl)-3,3-dimethyl-3H-indolium-5-sulfonate

C36H46N2O6S (634.3076416)


   

(1R,12S,13R,14E,19S,21S)-14-ethylidene-10-[(1R,12S,13R,14E,17R,19S,21S)-14-ethylidene-9-oxo-8,16-diazahexacyclo[11.5.2.11,8.02,7.016,19.012,21]henicosa-2,4,6,10-tetraen-17-yl]-8,16-diazahexacyclo[11.5.2.11,8.02,7.016,19.012,21]henicosa-2,4,6,10-tetraen-9-one

(1R,12S,13R,14E,19S,21S)-14-ethylidene-10-[(1R,12S,13R,14E,17R,19S,21S)-14-ethylidene-9-oxo-8,16-diazahexacyclo[11.5.2.11,8.02,7.016,19.012,21]henicosa-2,4,6,10-tetraen-17-yl]-8,16-diazahexacyclo[11.5.2.11,8.02,7.016,19.012,21]henicosa-2,4,6,10-tetraen-9-one

C42H42N4O2 (634.3307592)


   
   
   

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C35H54O10 (634.3716784)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C35H55O8P (634.363436)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C35H55O8P (634.363436)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C35H55O8P (634.363436)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (4E,7E)-hexadeca-4,7-dienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (4E,7E)-hexadeca-4,7-dienoate

C35H55O8P (634.363436)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C35H55O8P (634.363436)


   

[1-[(E)-dec-4-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-[(E)-dec-4-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C35H54O10 (634.3716784)


   

[1-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C35H54O10 (634.3716784)


   

(3b,20R,22R)-3,20,27-Trihydroxy-1-oxowitha-5,24-dienolide 3-glucoside

(3b,20R,22R)-3,20,27-Trihydroxy-1-oxowitha-5,24-dienolide 3-glucoside

C34H50O11 (634.335295)


   

(1R,15S,17R,18R,19S,20S)-6,18-dimethoxy-17-[1-oxo-3-(3,4,5-trimethoxyphenyl)prop-2-enoxy]-1,3,11,12,14,15,16,17,18,19,20,21-dodecahydroyohimban-19-carboxylic acid methyl ester

(1R,15S,17R,18R,19S,20S)-6,18-dimethoxy-17-[1-oxo-3-(3,4,5-trimethoxyphenyl)prop-2-enoxy]-1,3,11,12,14,15,16,17,18,19,20,21-dodecahydroyohimban-19-carboxylic acid methyl ester

C35H42N2O9 (634.2890162)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

1-{13-hydroxy-3-[5-(3-hydroxyphenyl)-5-methoxypentan-2-yl]-4,14,16,16-tetramethyl-7,11-dioxo-2,6,10,17-tetraoxatricyclo[11.3.1.1¹,⁵]octadecan-9-yl}ethyl acetate

1-{13-hydroxy-3-[5-(3-hydroxyphenyl)-5-methoxypentan-2-yl]-4,14,16,16-tetramethyl-7,11-dioxo-2,6,10,17-tetraoxatricyclo[11.3.1.1¹,⁵]octadecan-9-yl}ethyl acetate

C34H50O11 (634.335295)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-10,11-dihydroxy-9-(hydroxymethyl)-6a,6b,9,12a-tetramethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-10,11-dihydroxy-9-(hydroxymethyl)-6a,6b,9,12a-tetramethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C35H54O10 (634.3716784)


   

(1r,2r,3as,3bs,9ar,9bs,11as)-9a,11a-dimethyl-1-[(2s)-6-methyl-3-oxo-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptan-2-yl]-7-oxo-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl acetate

(1r,2r,3as,3bs,9ar,9bs,11as)-9a,11a-dimethyl-1-[(2s)-6-methyl-3-oxo-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptan-2-yl]-7-oxo-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl acetate

C35H54O10 (634.3716784)


   

2-{[2,16-dihydroxy-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-en-9-yl]oxy}oxane-3,4,5-triol

2-{[2,16-dihydroxy-22-(2-hydroxypropan-2-yl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.0¹,¹⁸.0³,¹⁷.0⁴,¹⁴.0⁷,¹².0¹²,¹⁴]tetracos-4-en-9-yl]oxy}oxane-3,4,5-triol

C35H54O10 (634.3716784)


   

2-{[5-(3-hydroxy-3-methylpent-4-en-1-yl)-1-(hydroxymethyl)-1,4a,6-trimethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]-hexahydro-2h-naphthalen-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[5-(3-hydroxy-3-methylpent-4-en-1-yl)-1-(hydroxymethyl)-1,4a,6-trimethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]-hexahydro-2h-naphthalen-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C31H54O13 (634.3564234)


   

(2s,4ar,6as,6br,8ar,9s,10s,12ar,12br,14bs)-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylic acid

(2s,4ar,6as,6br,8ar,9s,10s,12ar,12br,14bs)-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylic acid

C35H54O10 (634.3716784)