Exact Mass: 632.3954

Exact Mass Matches: 632.3954

Found 117 metabolites which its exact mass value is equals to given mass value 632.3954, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Calenduloside E

(2S,3S,4S,5R,6R)-6-[[(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H56O9 (632.3924)


Oleanolic acid 3-O-beta-D-glucosiduronic acid is a beta-D-glucosiduronic acid. It is functionally related to an oleanolic acid. Calenduloside E is a natural product found in Anredera baselloides, Polyscias scutellaria, and other organisms with data available. See also: Calendula Officinalis Flower (part of). Constituent of Calendula officinalis (pot marigold), Beta vulgaris (sugar beet) and Momordica cochinchinensis (Chinese cucumber). Oleanolic acid 3-glucuronide is found in common beet, green vegetables, and root vegetables. Calenduloside E is found in common beet. Calenduloside E is a constituent of Calendula officinalis (pot marigold), Beta vulgaris (sugar beet) and Momordica cochinchinensis (Chinese cucumber). Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1]. Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1].

   

Cloversaponin I

3,4,5-trihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-9-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C36H56O9 (632.3924)


Constituent of Trifolium repens (white clover). Cloversaponin I is found in tea, herbs and spices, and green vegetables. Cloversaponin I is found in green vegetables. Cloversaponin I is a constituent of Trifolium repens (white clover).

   

Lucyoside K

9-formyl-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C36H56O9 (632.3924)


Lucyoside K is found in fruits. Lucyoside K is a constituent of Luffa cylindrica (smooth luffa). Constituent of Luffa cylindrica (smooth luffa). Lucyoside K is found in fruits.

   

Metabolite B

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylate

C36H56O9 (632.3924)


   

PA(12:0/18:1(12Z)-O(9S,10R))

[(2R)-3-(dodecanoyloxy)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C33H61O9P (632.4053)


PA(12:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/12:0)

[(2R)-2-(dodecanoyloxy)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C33H61O9P (632.4053)


PA(18:1(12Z)-O(9S,10R)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/12:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/18:1(9Z)-O(12,13))

[(2R)-3-(dodecanoyloxy)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C33H61O9P (632.4053)


PA(12:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C33H61O9P (632.4053)


PA(18:1(9Z)-O(12,13)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/12:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/18:1(12Z)-O(9S,10R))

PA(i-12:0/18:1(12Z)-O(9S,10R))

C33H61O9P (632.4053)


PA(i-12:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/i-12:0)

[(2R)-2-[(10-methylundecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C33H61O9P (632.4053)


PA(18:1(12Z)-O(9S,10R)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/i-12:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/18:1(9Z)-O(12,13))

[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C33H61O9P (632.4053)


PA(i-12:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/i-12:0)

[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C33H61O9P (632.4053)


PA(18:1(9Z)-O(12,13)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/i-12:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

Momordin B

(2S,3S,4S,5R,6R)-6-{[(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H56O9 (632.3924)


Momordin b, also known as oleanolic acid 3-O-glucuronide or 3-O-(b-D-glucopyranuronosyl)oleanolate, is a member of the class of compounds known as triterpene saponins. Triterpene saponins are glycosylated derivatives of triterpene sapogenins. The sapogenin moiety backbone is usually based on the oleanane, ursane, taraxastane, bauerane, lanostane, lupeol, lupane, dammarane, cycloartane, friedelane, hopane, 9b,19-cyclo-lanostane, cycloartane, or cycloartanol skeleton. Momordin b is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Momordin b can be found in bitter gourd, which makes momordin b a potential biomarker for the consumption of this food product. Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1]. Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1].

   

3-O-beta-D-Quinovopyranosyl quinovic acid

Quinovic acid 3-O-beta-D-quinovopyranoside

C36H56O9 (632.3924)


   
   
   
   
   

Laetiposide C

Laetiposide C

C36H56O9 (632.3924)


   

Quinovic acid 3-O-rhamnoside

Quinovic acid 3-O-rhamnoside

C36H56O9 (632.3924)


   

Cincholic acid 3beta-O-beta-6-deoxy-D-glucopyranoside

Cincholic acid 3beta-O-beta-6-deoxy-D-glucopyranoside

C36H56O9 (632.3924)


   

3beta,23-dihydroxyurs-12,19(29)-dien-28-oic acid 28-beta-D-glucopyranosyl ester

3beta,23-dihydroxyurs-12,19(29)-dien-28-oic acid 28-beta-D-glucopyranosyl ester

C36H56O9 (632.3924)


   
   

quinovic acid-(28->1)-beta-D-fucopyranosyl ester

quinovic acid-(28->1)-beta-D-fucopyranosyl ester

C36H56O9 (632.3924)


   

Cimifoetiside III

Cimifoetiside III

C36H56O9 (632.3924)


   

3,4-seco-lupa-4(23),20(30)-diene-3,28-dioic acid 28-O-beta-D-glucopyranoside|acanthosessilioside A

3,4-seco-lupa-4(23),20(30)-diene-3,28-dioic acid 28-O-beta-D-glucopyranoside|acanthosessilioside A

C36H56O9 (632.3924)


   

jessic acid alpha-L-arabinopyranoside

jessic acid alpha-L-arabinopyranoside

C36H56O9 (632.3924)


   
   

Eriocarpin C

Eriocarpin C

C36H56O9 (632.3924)


   

3beta,23-dihydroxyurs-12,18(19)-dien-28-oic acid 28-beta-D-glucopyranosyl ester

3beta,23-dihydroxyurs-12,18(19)-dien-28-oic acid 28-beta-D-glucopyranosyl ester

C36H56O9 (632.3924)


   

3-O-beta-D-glucopyranosyl-11alpha,12alpha-epoxy-olean-28,13-olide

3-O-beta-D-glucopyranosyl-11alpha,12alpha-epoxy-olean-28,13-olide

C36H56O9 (632.3924)


   

oligoporin B

oligoporin B

C36H56O9 (632.3924)


   

3beta-hydroxylup-20(29)-en-28-oic acid 3-O-beta-D-glucuranopyranoside

3beta-hydroxylup-20(29)-en-28-oic acid 3-O-beta-D-glucuranopyranoside

C36H56O9 (632.3924)


   

3beta,23-dihydroxyurs-12,19(20)-dien-28-oic acid 28-beta-D-glucopyranosyl ester

3beta,23-dihydroxyurs-12,19(20)-dien-28-oic acid 28-beta-D-glucopyranosyl ester

C36H56O9 (632.3924)


   

gypsogenin-28-beta-D-glucoside

gypsogenin-28-beta-D-glucoside

C36H56O9 (632.3924)


   

C36H56O9_Urs-12-ene-27,28-dioic acid, 3-[(6-deoxy-alpha-L-mannopyranosyl)oxy]-, (3beta,5xi,9xi)

NCGC00169815-02_C36H56O9_Urs-12-ene-27,28-dioic acid, 3-[(6-deoxy-alpha-L-mannopyranosyl)oxy]-, (3beta,5xi,9xi)-

C36H56O9 (632.3924)


   

(2S,3S,4S,5R,6R)-6-[[(3S,6aR,6bS,8aS,14bR)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

(2S,3S,4S,5R,6R)-6-[[(3S,6aR,6bS,8aS,14bR)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H56O9 (632.3924)


   

(1S,2R,4aS,6aR,6bR,10S,12aR,14bS)-1,2,6b,9,9,12a-hexamethyl-10-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a,6a-dicarboxylic acid

(1S,2R,4aS,6aR,6bR,10S,12aR,14bS)-1,2,6b,9,9,12a-hexamethyl-10-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924)


   

(2S,3S,4S,5R,6R)-6-[[(3S,6aR,6bS,8aS,14bR)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid_major

(2S,3S,4S,5R,6R)-6-[[(3S,6aR,6bS,8aS,14bR)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid_major

C36H56O9 (632.3924)


   

Cloversaponin I

3,4,5-trihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-9-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C36H56O9 (632.3924)


   

Lucyoside K

9-formyl-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C36H56O9 (632.3924)


   

soyasapogenol E 3-O-beta-glucuronide

soyasapogenol E 3-O-beta-glucuronide

C36H56O9 (632.3924)


A saponin that is the 3-O-beta-glucuronide of soyasapogenol E.

   

PA(12:0/18:1(12Z)-O(9S,10R))

PA(12:0/18:1(12Z)-O(9S,10R))

C33H61O9P (632.4053)


   

PA(18:1(12Z)-O(9S,10R)/12:0)

PA(18:1(12Z)-O(9S,10R)/12:0)

C33H61O9P (632.4053)


   

PA(i-12:0/18:1(12Z)-O(9S,10R))

PA(i-12:0/18:1(12Z)-O(9S,10R))

C33H61O9P (632.4053)


   

PA(18:1(12Z)-O(9S,10R)/i-12:0)

PA(18:1(12Z)-O(9S,10R)/i-12:0)

C33H61O9P (632.4053)


   

PA(i-12:0/18:1(9Z)-O(12,13))

PA(i-12:0/18:1(9Z)-O(12,13))

C33H61O9P (632.4053)


   

PA(18:1(9Z)-O(12,13)/i-12:0)

PA(18:1(9Z)-O(12,13)/i-12:0)

C33H61O9P (632.4053)


   

[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropyl] dodecanoate

[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropyl] dodecanoate

C33H61O9P (632.4053)


   

[(2R)-1-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] dodecanoate

[(2R)-1-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] dodecanoate

C33H61O9P (632.4053)


   

gypsogenin 28-beta-D-glucoside

gypsogenin 28-beta-D-glucoside

C36H56O9 (632.3924)


   

PE-Cer 15:3;2O/18:5

PE-Cer 15:3;2O/18:5

C35H57N2O6P (632.3954)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] undecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] undecanoate

C33H61O9P (632.4053)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C33H61O9P (632.4053)


   

Momordin B

(2S,3S,4S,5R,6R)-6-[[(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H56O9 (632.3924)


Oleanolic acid 3-O-beta-D-glucosiduronic acid is a beta-D-glucosiduronic acid. It is functionally related to an oleanolic acid. Calenduloside E is a natural product found in Anredera baselloides, Polyscias scutellaria, and other organisms with data available. See also: Calendula Officinalis Flower (part of). Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1]. Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1].

   

MGDG O-27:7

MGDG O-27:7

C36H56O9 (632.3924)


   
   

PA O-18:0/12:3;O2

PA O-18:0/12:3;O2

C33H61O9P (632.4053)


   
   

PA P-18:0/12:2;O2

PA P-18:0/12:2;O2

C33H61O9P (632.4053)


   

PA 22:1/8:1;O

PA 22:1/8:1;O

C33H61O9P (632.4053)


   
   
   
   

CerPE 15:3;O2/18:5

CerPE 15:3;O2/18:5

C35H57N2O6P (632.3954)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4as,6as,6br,8ar,10r,11r,12ar,12br)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-3,4,5,6,7,8,8a,10,11,12,12b,13-dodecahydro-2h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4as,6as,6br,8ar,10r,11r,12ar,12br)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-3,4,5,6,7,8,8a,10,11,12,12b,13-dodecahydro-2h-picene-4a-carboxylate

C36H56O9 (632.3924)


   

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14br)-10-hydroxy-1,2,6b,9,9,12a-hexamethyl-4a-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14br)-10-hydroxy-1,2,6b,9,9,12a-hexamethyl-4a-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid

C36H56O9 (632.3924)


   

(2z,6r)-6-[(1r,3as,5ar,7r,9as,11s,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-11-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-enoic acid

(2z,6r)-6-[(1r,3as,5ar,7r,9as,11s,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-11-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-enoic acid

C36H56O9 (632.3924)


   

2,3-dihydroxy-12,19(29)-ursadien-28-oic acid; (2α,3α)-form,beta-d-glucopyranosyl ester

NA

C36H56O9 (632.3924)


{"Ingredient_id": "HBIN004032","Ingredient_name": "2,3-dihydroxy-12,19(29)-ursadien-28-oic acid; (2\u03b1,3\u03b1)-form,beta-d-glucopyranosyl ester","Alias": "NA","Ingredient_formula": "C36H56O9","Ingredient_Smile": "NA","Ingredient_weight": "632.82","OB_score": "NA","CAS_id": "146787-96-4","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "8946","PubChem_id": "NA","DrugBank_id": "NA"}

   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4as,6as,6br,8ar,10s,11r,12ar,12br)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-3,4,5,6,7,8,8a,10,11,12,12b,13-dodecahydro-2h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4as,6as,6br,8ar,10s,11r,12ar,12br)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-3,4,5,6,7,8,8a,10,11,12,12b,13-dodecahydro-2h-picene-4a-carboxylate

C36H56O9 (632.3924)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-3,4,5,6,7,8,8a,10,11,12,12b,13-dodecahydro-2h-picene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-3,4,5,6,7,8,8a,10,11,12,12b,13-dodecahydro-2h-picene-4a-carboxylate

C36H56O9 (632.3924)


   

(2r)-2-[(1r,3ar,4r,9as,11ar)-3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

(2r)-2-[(1r,3ar,4r,9as,11ar)-3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

C36H56O9 (632.3924)


   

(2s,3s,4s,5r,6s)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6s)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H56O9 (632.3924)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-3h-picene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-3h-picene-4a-carboxylate

C36H56O9 (632.3924)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-hydroxy-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-1-methylidene-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-hydroxy-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-1-methylidene-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H56O9 (632.3924)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-3h-picene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-3h-picene-4a-carboxylate

C36H56O9 (632.3924)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydro-1h-picene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydro-1h-picene-4a-carboxylate

C36H56O9 (632.3924)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-hydroxy-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-1-methylidene-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-hydroxy-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-1-methylidene-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H56O9 (632.3924)


   

6-(7-hydroxy-3a,6,6,9a,11a-pentamethyl-11-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-1-yl)-2-methylhept-2-enoic acid

6-(7-hydroxy-3a,6,6,9a,11a-pentamethyl-11-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-1-yl)-2-methylhept-2-enoic acid

C36H56O9 (632.3924)


   

(1s,2s,4s,5r,6s,9s,11r,14r,15s,18s,23r)-6,10,10,14,15,21,21-heptamethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,24-dioxaheptacyclo[16.5.2.0¹,¹⁵.0²,⁴.0⁵,¹⁴.0⁶,¹¹.0¹⁸,²³]pentacosan-25-one

(1s,2s,4s,5r,6s,9s,11r,14r,15s,18s,23r)-6,10,10,14,15,21,21-heptamethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,24-dioxaheptacyclo[16.5.2.0¹,¹⁵.0²,⁴.0⁵,¹⁴.0⁶,¹¹.0¹⁸,²³]pentacosan-25-one

C36H56O9 (632.3924)


   

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10,11-dihydroxy-2,6a,6b,9,9,12a-hexamethyl-1-methylidene-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10,11-dihydroxy-2,6a,6b,9,9,12a-hexamethyl-1-methylidene-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H56O9 (632.3924)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8ar,12ar,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8ar,12ar,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H56O9 (632.3924)


   

(2r)-2-[(1r,3ar,4s,5ar,9as,11ar)-3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

(2r)-2-[(1r,3ar,4s,5ar,9as,11ar)-3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

C36H56O9 (632.3924)


   

2,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a,6a-dicarboxylic acid

2,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924)


   

(2s,3s,4s,5r,6s)-6-{[(3s,4ar,6as,6br,8ar,12ar,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6s)-6-{[(3s,4ar,6as,6br,8ar,12ar,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H56O9 (632.3924)


   

(4as,6ar,6br,8as,10s,12ar,12br,14bs)-2,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a,6a-dicarboxylic acid

(4as,6ar,6br,8as,10s,12ar,12br,14bs)-2,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924)


   

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-3,4,5,6,7,8,8a,10,11,12,12b,13-dodecahydro-2h-picene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-3,4,5,6,7,8,8a,10,11,12,12b,13-dodecahydro-2h-picene-4a-carboxylate

C36H56O9 (632.3924)


   

(2s,3r,4r,5r)-2-[(1s,1's,2r,4s,4'r,5r,5'r,6'r,10's,12's,13's,15's,16'r,18's,21'r)-4',5,6',12',17',17'-hexamethyl-3,9'-dioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosane]-4,15'-dioloxy]oxane-3,4,5-triol

(2s,3r,4r,5r)-2-[(1s,1's,2r,4s,4'r,5r,5'r,6'r,10's,12's,13's,15's,16'r,18's,21'r)-4',5,6',12',17',17'-hexamethyl-3,9'-dioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosane]-4,15'-dioloxy]oxane-3,4,5-triol

C36H56O9 (632.3924)


   
   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,2r,4as,6as,6br,8ar,10s,11r,12as,12br)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydro-1h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,2r,4as,6as,6br,8ar,10s,11r,12as,12br)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydro-1h-picene-4a-carboxylate

C36H56O9 (632.3924)


   

6-{[(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a-carboxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

6-{[(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a-carboxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H56O9 (632.3924)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4as,6as,6br,8ar,9r,10s,12ar,12br)-10-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-3,4,5,6,7,8,8a,10,11,12,12b,13-dodecahydro-2h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4as,6as,6br,8ar,9r,10s,12ar,12br)-10-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-3,4,5,6,7,8,8a,10,11,12,12b,13-dodecahydro-2h-picene-4a-carboxylate

C36H56O9 (632.3924)


   

(2z,6r)-6-[(1r,3as,5ar,7r,9as,11r,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-11-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-enoic acid

(2z,6r)-6-[(1r,3as,5ar,7r,9as,11r,11ar)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-11-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-enoic acid

C36H56O9 (632.3924)


   

(4as,6ar,6br,8ar,10s,12ar,12br,14bs)-2,2,6b,9,9,12a-hexamethyl-10-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a,6a-dicarboxylic acid

(4as,6ar,6br,8ar,10s,12ar,12br,14bs)-2,2,6b,9,9,12a-hexamethyl-10-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924)


   

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924)


   

3-[(3r,3ar,3br,5ar,6s,7s,9ar,9br,11as)-6,9a,9b-trimethyl-3,7-bis(prop-1-en-2-yl)-11a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-dodecahydro-1h-cyclopenta[a]phenanthren-6-yl]propanoic acid

3-[(3r,3ar,3br,5ar,6s,7s,9ar,9br,11as)-6,9a,9b-trimethyl-3,7-bis(prop-1-en-2-yl)-11a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-dodecahydro-1h-cyclopenta[a]phenanthren-6-yl]propanoic acid

C36H56O9 (632.3924)


   

(4as,6ar,6br,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

(4as,6ar,6br,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4as,6as,6br,8ar,10s,11r,12ar,12br,14bs)-10,11-dihydroxy-2,6a,6b,9,9,12a-hexamethyl-1-methylidene-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4as,6as,6br,8ar,10s,11r,12ar,12br,14bs)-10,11-dihydroxy-2,6a,6b,9,9,12a-hexamethyl-1-methylidene-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H56O9 (632.3924)


   

(2s,3s,4s,5r,6r)-6-{[(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a-carboxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a-carboxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H56O9 (632.3924)


   

(4as,6as,6br,8ar,9s,10s,12ar,12br,14bs)-9-formyl-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9s,10s,12ar,12br,14bs)-9-formyl-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C36H56O9 (632.3924)


   

(2s,4as,6as,6br,8ar,10s,12as,12br,14br)-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4,5,6,7,8,8a,10,11,12,12b,14b-dodecahydro-1h-picene-2-carboxylic acid

(2s,4as,6as,6br,8ar,10s,12as,12br,14br)-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4,5,6,7,8,8a,10,11,12,12b,14b-dodecahydro-1h-picene-2-carboxylic acid

C36H56O9 (632.3924)


   

(1s,2r,6ar,6br,12ar)-1,2,6b,9,9,12a-hexamethyl-10-{[(3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

(1s,2r,6ar,6br,12ar)-1,2,6b,9,9,12a-hexamethyl-10-{[(3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924)


   

(2r)-2-[(1r,3ar,4r,5ar,9as,11ar)-3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

(2r)-2-[(1r,3ar,4r,5ar,9as,11ar)-3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

C36H56O9 (632.3924)


   

6-{[3a-carboxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

6-{[3a-carboxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H56O9 (632.3924)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10s,11r,12ar,12br,14bs)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-3h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10s,11r,12ar,12br,14bs)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-3h-picene-4a-carboxylate

C36H56O9 (632.3924)


   

1,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

1,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924)


   

6,10,10,14,15,21,21-heptamethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,24-dioxaheptacyclo[16.5.2.0¹,¹⁵.0²,⁴.0⁵,¹⁴.0⁶,¹¹.0¹⁸,²³]pentacosan-25-one

6,10,10,14,15,21,21-heptamethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,24-dioxaheptacyclo[16.5.2.0¹,¹⁵.0²,⁴.0⁵,¹⁴.0⁶,¹¹.0¹⁸,²³]pentacosan-25-one

C36H56O9 (632.3924)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-10,11-dihydroxy-2,6a,6b,9,9,12a-hexamethyl-1-methylidene-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-10,11-dihydroxy-2,6a,6b,9,9,12a-hexamethyl-1-methylidene-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H56O9 (632.3924)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12ar,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12ar,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C36H56O9 (632.3924)


   

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924)


   

10-hydroxy-1,2,6b,9,9,12a-hexamethyl-4a-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]carbonyl}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid

10-hydroxy-1,2,6b,9,9,12a-hexamethyl-4a-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]carbonyl}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid

C36H56O9 (632.3924)


   

2-(3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl)-6-methylhept-5-enoic acid

2-(3a,6,6,9a,11a-pentamethyl-7-oxo-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl)-6-methylhept-5-enoic acid

C36H56O9 (632.3924)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-3h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-3h-picene-4a-carboxylate

C36H56O9 (632.3924)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-3h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-3h-picene-4a-carboxylate

C36H56O9 (632.3924)