Exact Mass: 628.470018
Exact Mass Matches: 628.470018
Found 333 metabolites which its exact mass value is equals to given mass value 628.470018
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Muricoreacin
Murihexocin B is found in fruits. Murihexocin B is a constituent of the leaves of Annona muricata (soursop). Constituent of the leaves of Annona muricata (soursop). Muricoreacin is found in fruits.
Annohexocin
Annohexocin is found in fruits. Annohexocin is a constituent of the leaves of Annona muricata (soursop). Constituent of the leaves of Annona muricata (soursop). Annohexocin is found in fruits.
DG(15:0/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)
DG(15:0/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(15:0/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(15:0/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)
DG(15:0/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(15:0/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(22:5(4Z,7Z,10Z,13Z,16Z)/15:0/0:0)
DG(22:5(4Z,7Z,10Z,13Z,16Z)/15:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/15:0/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(4Z,7Z,10Z,13Z,16Z)/15:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/15:0/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(22:5(7Z,10Z,13Z,16Z,19Z)/15:0/0:0)
DG(22:5(7Z,10Z,13Z,16Z,19Z)/15:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/15:0/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(15:0/0:0/22:5n6)
DG(15:0/0:0/22:5n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(15:0/0:0/22:5n6), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(15:0/0:0/22:5n3)
DG(15:0/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(15:0/0:0/22:5n3), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(18:2n6/0:0/18:3n6)
DG(18:2n6/0:0/18:3n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:2n6/0:0/18:3n6), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of g-linolenic acid at the C-3 position. The linoleic acid moiety is derived from seed oils, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(18:2n6/0:0/18:3n3)
DG(18:2n6/0:0/18:3n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:2n6/0:0/18:3n3), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of a-linolenic acid at the C-3 position. The linoleic acid moiety is derived from seed oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(14:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/0:0)
DG(14:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(14:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:0/0:0)
DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(14:0/0:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))
DG(14:0/0:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/0:0/14:0)
DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/0:0/14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-14:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/0:0)
DG(i-14:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-14:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-14:0/0:0)
DG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-14:0/0:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))
DG(i-14:0/0:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/0:0/i-14:0)
DG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/0:0/i-14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-14:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/0:0)
DG(i-14:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-14:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-14:0/0:0)
DG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-14:0/0:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))
DG(i-14:0/0:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/0:0/i-14:0)
DG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/0:0/i-14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-14:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/0:0)
DG(i-14:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-14:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-14:0/0:0)
DG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-14:0/0:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))
DG(i-14:0/0:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/0:0/i-14:0)
DG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/0:0/i-14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-14:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/0:0)
DG(i-14:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-14:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-14:0/0:0)
DG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-14:0/0:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))
DG(i-14:0/0:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/0:0/i-14:0)
DG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/0:0/i-14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-14:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/0:0)
DG(i-14:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-14:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-14:0/0:0)
DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-14:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-14:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-14:0/0:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))
DG(i-14:0/0:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/0:0/i-14:0)
DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/0:0/i-14:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
3-O-(2,3-dimethylbutanoyl)-13-O-dodecanoyl-20-deoxyingenol
Ac,octacosyl ester-3-(Hydroxy-3-methoxyphenyl)-2-propenoic acid
cunninghamic acid A methyl ester|cunninghamic acid B methyl ester
Muricoreacin
PE-Cer(d14:2(4E,6E)/18:1(9Z))
Annohexocin
2-(9R-(15Z-docosenoyloxy)-3-methyl-2Z-decenoyloxy)-ethanesulfonic acid
DG(15:1(9Z)/22:4(7Z,10Z,13Z,16Z)/0:0)[iso2]
Telocinobufagin-3-(14-hydroxymyristate)
N,N,N,N,N-pentakis(methoxymethyl)-N-[(octadecyloxy)methyl]-1,3,5-triazine-2,4,6-triamine
[[(1a,3b,5E,7E)-9,10-Secocholesta-5,7,10(19)-triene-1,3-diyl]bis(oxy)]bis[(1,1-dimethylethyl)dimethylsilane]
TRIHEXYL(TETRADECYL)PHOSPHONIUM HEXAFLUOROPHOSPHATE
Tetranabinex
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics
1-cyclohexyl-3-[(3R,9S,10R)-9-[[cyclohexylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
C36H60N4O5 (628.4563469999999)
[(E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-3-hydroxy-2-(propanoylamino)hexacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-3-hydroxy-2-(pentanoylamino)tetracosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-2-acetamido-3-hydroxyheptacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-2-(hexanoylamino)-3-hydroxytricosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-3-hydroxy-2-(octanoylamino)henicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-2-(heptanoylamino)-3-hydroxydocosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-3-hydroxy-2-(nonanoylamino)icosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-2-(butanoylamino)-3-hydroxypentacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(Z)-hexadec-9-enoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
[(4E,8E)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxytridecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-2-(decanoylamino)-3-hydroxynonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-3-hydroxy-2-(undecanoylamino)octadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxydodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxytridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]undec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]undecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxydodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
(1-hydroxy-3-tridecanoyloxypropan-2-yl) (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
(1-hydroxy-3-undecanoyloxypropan-2-yl) (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate
2,3-di(octanoyloxy)propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
2,3-di(nonanoyloxy)propyl (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
(2-decanoyloxy-3-octanoyloxypropyl) (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[(E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-3-hydroxy-2-(pentadecanoylamino)tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-2-(dodecanoylamino)-3-hydroxyheptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-3-hydroxy-2-(tridecanoylamino)hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-3-hydroxy-2-(tetradecanoylamino)pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropyl] (Z)-henicos-11-enoate
[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] nonadecanoate
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropyl] (11Z,14Z)-henicosa-11,14-dienoate
(1-heptadecanoyloxy-3-hydroxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (Z)-nonadec-9-enoate
[1-hydroxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
(1-hydroxy-3-pentadecanoyloxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-hydroxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate
[1-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] dodecanoate
2,3-bis[[(6Z,9Z)-dodeca-6,9-dienoyl]oxy]propyl (Z)-dodec-5-enoate
[(4E,8E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxyheptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-dodec-5-enoyl]oxypropyl] (Z)-dodec-5-enoate
(1-hydroxy-3-nonanoyloxypropan-2-yl) (13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoate
[1-Carboxy-3-(2-decanoyloxy-3-hexadecanoyloxypropoxy)propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[1-Carboxy-3-(3-pentadecanoyloxy-2-undecanoyloxypropoxy)propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[1-Carboxy-3-(2-dodecanoyloxy-3-tetradecanoyloxypropoxy)propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[1-Carboxy-3-[2,3-di(tridecanoyloxy)propoxy]propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[1-Carboxy-3-(3-dodecanoyloxy-2-tetradecanoyloxypropoxy)propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[1-Carboxy-3-(2-pentadecanoyloxy-3-undecanoyloxypropoxy)propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[1-Carboxy-3-(3-decanoyloxy-2-hexadecanoyloxypropoxy)propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (E)-henicos-9-enoate
[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate
[(2S)-3-hydroxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate
[(2S)-1-[(E)-heptadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
[(2S)-1-hydroxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[(2S)-1-heptadecanoyloxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2S)-3-hydroxy-2-pentadecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2S)-1-hydroxy-3-pentadecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (9E,11E,13E)-henicosa-9,11,13-trienoate
[(2S)-2-heptadecanoyloxy-3-hydroxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-hydroxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] henicosanoate
[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (9E,11E)-henicosa-9,11-dienoate
[3-(3-Acetyloxy-2-tetracosanoyloxypropoxy)-1-carboxypropyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[1-Carboxy-3-(3-propanoyloxy-2-tricosanoyloxypropoxy)propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[3-(3-Butanoyloxy-2-docosanoyloxypropoxy)-1-carboxypropyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[1-Carboxy-3-(3-hexanoyloxy-2-icosanoyloxypropoxy)propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[1-Carboxy-3-(2-heptadecanoyloxy-3-nonanoyloxypropoxy)propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[1-Carboxy-3-(3-heptanoyloxy-2-nonadecanoyloxypropoxy)propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
2-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-butanoyloxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-Carboxy-3-(2-henicosanoyloxy-3-pentanoyloxypropoxy)propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
[1-Carboxy-3-(2-octadecanoyloxy-3-octanoyloxypropoxy)propyl]-trimethylazanium
C36H70NO7+ (628.5152009999999)
2-[[2-hexanoyloxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[carboxy-[3-dodecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
C35H66NO8+ (628.4788176000001)
2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-octoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[carboxy-[2-[(Z)-hexadec-9-enoyl]oxy-3-nonanoyloxypropoxy]methoxy]ethyl-trimethylazanium
C35H66NO8+ (628.4788176000001)
2-[carboxy-[2-[(Z)-heptadec-9-enoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium
C35H66NO8+ (628.4788176000001)
2-[carboxy-[3-[(Z)-hexacos-15-enoyl]oxy-2-hydroxypropoxy]methoxy]ethyl-trimethylazanium
C36H70NO7+ (628.5152009999999)
2-[carboxy-[2-[(Z)-tetradec-9-enoyl]oxy-3-undecanoyloxypropoxy]methoxy]ethyl-trimethylazanium
C35H66NO8+ (628.4788176000001)
2-[carboxy-[3-decanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
C35H66NO8+ (628.4788176000001)
2-[[3-decoxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-acetyloxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-decanoyloxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1-heptadecanoyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerol
TG(36:5)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
BisMePA(30:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
TG(37:5)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved