Exact Mass: 617.3047252
Exact Mass Matches: 617.3047252
Found 338 metabolites which its exact mass value is equals to given mass value 617.3047252
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Rotigaptide
PC(2:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
PC(2:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/2:0)
PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/2:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(2:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
PC(2:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/2:0)
PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/2:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(2:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
PC(2:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/2:0)
PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/2:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
8-Deacetylyunaconitine
Ala Arg Trp Trp
Ala Trp Arg Trp
Ala Trp Trp Arg
Glu Phe His Trp
Glu Phe Trp His
Glu His Phe Trp
Glu His Trp Phe
Glu Lys Arg Trp
Glu Lys Trp Arg
Glu Gln Arg Trp
Glu Gln Trp Arg
Glu Arg Lys Trp
Glu Arg Gln Trp
Glu Arg Trp Lys
Glu Arg Trp Gln
Glu Trp Phe His
Glu Trp His Phe
Glu Trp Lys Arg
Glu Trp Gln Arg
Glu Trp Arg Lys
Glu Trp Arg Gln
Phe Glu His Trp
Phe Glu Trp His
Phe His Glu Trp
Phe His Trp Glu
Phe Trp Glu His
Phe Trp His Glu
His Glu Phe Trp
His Glu Trp Phe
His Phe Glu Trp
His Phe Trp Glu
His Ile Trp Tyr
His Ile Tyr Trp
His Leu Trp Tyr
His Leu Tyr Trp
His Trp Glu Phe
His Trp Phe Glu
His Trp Ile Tyr
His Trp Leu Tyr
His Trp Tyr Ile
His Trp Tyr Leu
His Tyr Ile Trp
His Tyr Leu Trp
His Tyr Trp Ile
His Tyr Trp Leu
Ile His Trp Tyr
Ile His Tyr Trp
Ile Asn Trp Trp
Ile Trp His Tyr
Ile Trp Asn Trp
Ile Trp Trp Asn
Ile Trp Tyr His
Ile Tyr His Trp
Ile Tyr Trp His
Lys Glu Arg Trp
Lys Glu Trp Arg
Lys Arg Glu Trp
Lys Arg Trp Glu
Lys Val Trp Trp
Lys Trp Glu Arg
Lys Trp Arg Glu
Lys Trp Val Trp
Lys Trp Trp Val
Leu His Trp Tyr
Leu His Tyr Trp
Leu Asn Trp Trp
Leu Trp His Tyr
Leu Trp Asn Trp
Leu Trp Trp Asn
Leu Trp Tyr His
Leu Tyr His Trp
Leu Tyr Trp His
Met Arg Arg Arg
Asn Ile Trp Trp
Asn Leu Trp Trp
Asn Trp Ile Trp
Asn Trp Leu Trp
Asn Trp Trp Ile
Asn Trp Trp Leu
Gln Glu Arg Trp
Gln Glu Trp Arg
Gln Arg Glu Trp
Gln Arg Trp Glu
Gln Val Trp Trp
Gln Trp Glu Arg
Gln Trp Arg Glu
Gln Trp Val Trp
Gln Trp Trp Val
Arg Ala Trp Trp
Arg Glu Lys Trp
Arg Glu Gln Trp
Arg Glu Trp Lys
Arg Glu Trp Gln
Arg Lys Glu Trp
Arg Lys Trp Glu
Arg Met Arg Arg
Arg Gln Glu Trp
Arg Gln Trp Glu
Arg Arg Met Arg
Arg Arg Arg Met
Arg Arg Thr Trp
Arg Arg Trp Thr
Arg Thr Arg Trp
Arg Thr Trp Arg
Arg Trp Ala Trp
Arg Trp Glu Lys
Arg Trp Glu Gln
Arg Trp Lys Glu
Arg Trp Gln Glu
Arg Trp Arg Thr
Arg Trp Thr Arg
Arg Trp Trp Ala
Thr Arg Arg Trp
Thr Arg Trp Arg
Thr Trp Arg Arg
Val Lys Trp Trp
Val Gln Trp Trp
Val Trp Lys Trp
Val Trp Gln Trp
Val Trp Trp Lys
Val Trp Trp Gln
Trp Ala Arg Trp
Trp Ala Trp Arg
Trp Glu Phe His
Trp Glu His Phe
Trp Glu Lys Arg
Trp Glu Gln Arg
Trp Glu Arg Lys
Trp Glu Arg Gln
Trp Phe Glu His
Trp Phe His Glu
Trp His Glu Phe
Trp His Phe Glu
Trp His Ile Tyr
Trp His Leu Tyr
Trp His Tyr Ile
Trp His Tyr Leu
Trp Ile His Tyr
Trp Ile Asn Trp
Trp Ile Trp Asn
Trp Ile Tyr His
Trp Lys Glu Arg
Trp Lys Arg Glu
Trp Lys Val Trp
Trp Lys Trp Val
Trp Leu His Tyr
Trp Leu Asn Trp
Trp Leu Trp Asn
Trp Leu Tyr His
Trp Asn Ile Trp
Trp Asn Leu Trp
Trp Asn Trp Ile
Trp Asn Trp Leu
Trp Gln Glu Arg
Trp Gln Arg Glu
Trp Gln Val Trp
Trp Gln Trp Val
Trp Arg Ala Trp
Trp Arg Glu Lys
Trp Arg Glu Gln
Trp Arg Lys Glu
Trp Arg Gln Glu
Trp Arg Arg Thr
Trp Arg Thr Arg
Trp Arg Trp Ala
Trp Thr Arg Arg
Trp Val Lys Trp
Trp Val Gln Trp
Trp Val Trp Lys
Trp Val Trp Gln
Trp Trp Ala Arg
Trp Trp Ile Asn
Trp Trp Lys Val
Trp Trp Leu Asn
Trp Trp Asn Ile
Trp Trp Asn Leu
Trp Trp Gln Val
Trp Trp Arg Ala
Trp Trp Val Lys
Trp Trp Val Gln
Trp Tyr His Ile
Trp Tyr His Leu
Trp Tyr Ile His
Trp Tyr Leu His
Tyr His Ile Trp
Tyr His Leu Trp
Tyr His Trp Ile
Tyr His Trp Leu
Tyr Ile His Trp
Tyr Ile Trp His
Tyr Leu His Trp
Tyr Leu Trp His
Tyr Trp His Ile
Tyr Trp His Leu
Tyr Trp Ile His
Tyr Trp Leu His
Rotigaptide
C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent
Benzeneacetamide, N-((4-hydroxy(1,1-biphenyl)-3-yl)methyl)-3-(2-(((2R)-2-hydroxy-2-(4-hydroxy-3-((methylsulfonyl)amino)phenyl)ethyl)amino)-2-methylpropyl)-
5-[[4-[5-[[4-[5-[Acetyl(hydroxy)amino]pentylamino]-4-oxobutanoyl]-hydroxyamino]pentylamino]-4-oxobutanoyl]-hydroxyamino]pentylazanium;iron
4-[3-[(3S)-2-[(S)-tert-butylsulfinyl]-3-(2-hydroxyethyl)-6-[(4-methyl-1-piperazinyl)-oxomethyl]-1,3-dihydropyrrolo[3,4-c]pyridin-4-yl]phenyl]-N,N-dimethylbenzamide
N-[(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(1-naphthalenylamino)-oxomethyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-3-(4-morpholinyl)propanamide
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]urea
N-[(3R,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3S,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]urea
N-[(3S,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]urea
N-[(3S,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3S,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
4-[3-[(3R)-2-[(R)-tert-butylsulfinyl]-3-(2-hydroxyethyl)-6-[(4-methyl-1-piperazinyl)-oxomethyl]-1,3-dihydropyrrolo[3,4-c]pyridin-4-yl]phenyl]-N,N-dimethylbenzamide
3-[3-[(3S)-2-[(S)-tert-butylsulfinyl]-3-(2-hydroxyethyl)-6-[(4-methyl-1-piperazinyl)-oxomethyl]-1,3-dihydropyrrolo[3,4-c]pyridin-4-yl]phenyl]-N,N-dimethylbenzamide
N-[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(1-naphthalenylamino)-oxomethyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-3-(4-morpholinyl)propanamide
N-[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(1-naphthalenylamino)-oxomethyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-3-(4-morpholinyl)propanamide
N-[(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(1-naphthalenylamino)-oxomethyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-3-(4-morpholinyl)propanamide
N-[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(1-naphthalenylamino)-oxomethyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-3-(4-morpholinyl)propanamide
N-[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(1-naphthalenylamino)-oxomethyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-3-(4-morpholinyl)propanamide
N-[(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(1-naphthalenylamino)-oxomethyl]amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]-3-(4-morpholinyl)propanamide
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]urea
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]urea
N-[(3R,9R,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]urea
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]urea
N-[(3R,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3S,9R,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3R,9S,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3S,9S,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3R,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3R,9S,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3S,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3R,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[oxo(pyridin-4-yl)methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
3-[3-[(3R)-2-[(R)-tert-butylsulfinyl]-3-(2-hydroxyethyl)-6-[(4-methyl-1-piperazinyl)-oxomethyl]-1,3-dihydropyrrolo[3,4-c]pyridin-4-yl]phenyl]-N,N-dimethylbenzamide
2-amino-3-[[3-butanoyloxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-hexanoyloxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
3-[[3-acetyloxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-aminopropanoic acid
Cyclo(RADfK)
Cyclo(RADfK) is a selective α(v)β(3) integrin ligand that has been extensively used for research, therapy, and diagnosis of neoangiogenesis.
21-chloro-15,16,33,33-tetramethyl-24-methylidene-10-(prop-1-en-2-yl)-7,11,32-trioxa-18-azadecacyclo[25.4.2.0²,¹⁶.0⁵,¹⁵.0⁶,⁸.0⁶,¹².0¹⁷,³¹.0¹⁹,³⁰.0²²,²⁹.0²⁵,²⁸]tritriaconta-17(31),19,21,29-tetraene-5,9-diol
(4r,5r,6s,7s,8r,18s)-8-(acetyloxy)-5,7,14-trihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl benzoate
3-[(2s)-4-[(2e,4e,6s)-6-[(2s,5r,6r)-1,6-dimethyl-8,9-dioxaspiro[bicyclo[3.3.1]nonane-2,2'-oxiran]-3-en-7-yl]-4-methylhepta-2,4-dienoyl]-1-(5-hydroxy-6-methyloxan-2-yl)-3,5-dioxopyrrolidin-2-yl]propanoic acid; ethane
(1s,19s,22s,26r,31r)-2,22-dihydroxy-26-(2-hydroxypropan-2-yl)-1,9,9,11,11,31-hexamethyl-10,27-dioxa-3-azaheptacyclo[17.12.0.0⁴,¹⁶.0⁶,¹⁴.0⁷,¹².0²²,³¹.0²³,²⁸]hentriaconta-2,4(16),5,7(12),14,23-hexaene-17,25-dione
14-benzoyl-8-o-methyl-aconine i
{"Ingredient_id": "HBIN001369","Ingredient_name": "14-benzoyl-8-o-methyl-aconine i","Alias": "NA","Ingredient_formula": "C33H47NO10","Ingredient_Smile": "CCN1CC2(C(CC(C34C2C(C(C31)C5(C6C4CC(C6OC(=O)C7=CC=CC=C7)(C(C5O)OC)O)OC)OC)OC)O)COC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2248","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
8-deacetylyunaconitine
{"Ingredient_id": "HBIN013693","Ingredient_name": "8-deacetylyunaconitine","Alias": "NA","Ingredient_formula": "C33H47NO10","Ingredient_Smile": "CCN1CC2(C(CC(C34C2C(C(C31)C5(CC(C6(CC4C5C6OC(=O)C7=CC=C(C=C7)OC)O)OC)O)OC)OC)O)COC","Ingredient_weight": "617.7 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "4791","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "137706281","DrugBank_id": "NA"}