Exact Mass: 612.4475192
Exact Mass Matches: 612.4475192
Found 282 metabolites which its exact mass value is equals to given mass value 612.4475192
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Muricatocin B
Muricatocin A is found in fruits. Muricatocin A is a constituent of the leaves of Annona muricata (soursop) Constituent of the leaves of Annona muricata (soursop). Muricatocin B is found in fruits.
Muricapentocin
Muricapentocin is found in fruits. Muricapentocin is a constituent of Annona muricata (soursop) Constituent of Annona muricata (soursop). Muricapentocin is found in fruits.
Annomuricin A
Annomuricin E is found in fruits. Annomuricin E is a constituent of the leaves of Annona muricata (soursop). Constituent of the leaves of Annona muricata (soursop). Annomuricin C is found in fruits.
Annopentocin A
Annopentocin A is found in fruits. Annopentocin A is a constituent of Annona muricata (soursop) Constituent of Annona muricata (soursop). Annopentocin A is found in fruits.
DG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0)
DG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of two chains of a-linolenic acid at the C-1 and C-2 positions. The a-linolenic acid moieties are derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of two chains of a-linolenic acid at the C-1 and C-2 positions. The a-linolenic acid moieties are derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Muricatalin
Muricatalin is found in fruits. Muricatalin is a constituent of Annona muricata (soursop). Constituent of Annona muricata (soursop). Muricatalin is found in fruits.
Muricatalicin
Muricatalicin is found in fruits. Muricatalicin is a constituent of Annona muricata (soursop) Constituent of Annona muricata (soursop). Muricatalicin is found in fruits.
DG(18:3n3/0:0/18:3n3)
DG(18:3n3/0:0/18:3n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1 C-2, or C-3 positions. DG(18:3n3/0:0/18:3n3), in particular, consists of two chains of a-linolenic acid at the C-1 and C-3 positions. The a-linolenic acid moieties are derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
Muricatin A
Muricatin A is found in fruits. Muricatin A is a constituent of Annona muricata (soursop) Constituent of Annona muricata (soursop). Muricatin A is found in fruits.
Muricatin B
Muricatin B is found in fruits. Muricatin B is a constituent of Annona muricata (soursop)
DG(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)
DG(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of myristic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)
DG(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)
DG(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)
DG(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)/0:0)
DG(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)/0:0)
DG(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of two chains of g-linolenic acid at the C-1 and C-2 positions. The g-linolenic acid moieties are derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)/0:0)
DG(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)/0:0)
DG(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z)/0:0)
DG(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the linoleic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z)/0:0)
DG(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z)/0:0)
DG(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z)/0:0)
DG(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0/0:0)
DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of myristic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the myristic acid moiety is derived from nutmeg and butter. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
Annomuricin-D-one
Annomuricin-D-one is found in fruits. Annomuricin-D-one is a constituent of Annona muricata (soursop) Constituent of Annona muricata (soursop). Annomuricin-D-one is found in fruits.
Annopentocin C
Annopentocin C is found in fruits. Annopentocin C is a constituent of Annona muricata (soursop) Constituent of Annona muricata (soursop). Annopentocin C is found in fruits.
Annopentocin B
Annopentocin B is found in fruits. Annopentocin B is a constituent of Annona muricata (soursop) Constituent of Annona muricata (soursop). Annopentocin B is found in fruits.
DG(14:0/0:0/22:6n3)
DG(14:0/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(14:0/0:0/22:6n3), in particular, consists of one chain of myristic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The myristic acid moiety is derived from nutmeg and butter, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(14:1n5/0:0/22:5n6)
DG(14:1n5/0:0/22:5n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(14:1n5/0:0/22:5n6), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The myristoleic acid moiety is derived from milk fats, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(14:1n5/0:0/22:5n3)
DG(14:1n5/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(14:1n5/0:0/22:5n3), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The myristoleic acid moiety is derived from milk fats, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(16:1n7/0:0/20:5n3)
DG(16:1n7/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(16:1n7/0:0/20:5n3), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(18:3n6/0:0/18:3n6)
DG(18:3n6/0:0/18:3n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1 C-2, or C-3 positions. DG(18:3n6/0:0/18:3n6), in particular, consists of two chains of g-linolenic acid at the C-1 and C-3 positions. The g-linolenic acid moieties are derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(18:3n6/0:0/18:3n3)
DG(18:3n6/0:0/18:3n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n6/0:0/18:3n3), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of a-linolenic acid at the C-3 position. The g-linolenic acid moiety is derived from animal fats, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(12:0/PGF1alpha/0:0)
DG(12:0/PGF1alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(12:0/PGF1alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(PGF1alpha/12:0/0:0)
DG(PGF1alpha/12:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGF1alpha/12:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(12:0/0:0/PGF1alpha)
DG(12:0/0:0/PGF1alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(PGF1alpha/0:0/12:0)
DG(PGF1alpha/0:0/12:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(15:0/18:1(12Z)-2OH(9,10)/0:0)
DG(15:0/18:1(12Z)-2OH(9,10)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(15:0/18:1(12Z)-2OH(9,10)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:1(12Z)-2OH(9,10)/15:0/0:0)
DG(18:1(12Z)-2OH(9,10)/15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:1(12Z)-2OH(9,10)/15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(15:0/0:0/18:1(12Z)-2OH(9,10))
DG(15:0/0:0/18:1(12Z)-2OH(9,10)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:1(12Z)-2OH(9,10)/0:0/15:0)
DG(18:1(12Z)-2OH(9,10)/0:0/15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/18:1(12Z)-2OH(9,10)/0:0)
DG(a-15:0/18:1(12Z)-2OH(9,10)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-15:0/18:1(12Z)-2OH(9,10)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:1(12Z)-2OH(9,10)/a-15:0/0:0)
DG(18:1(12Z)-2OH(9,10)/a-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:1(12Z)-2OH(9,10)/a-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/0:0/18:1(12Z)-2OH(9,10))
DG(a-15:0/0:0/18:1(12Z)-2OH(9,10)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:1(12Z)-2OH(9,10)/0:0/a-15:0)
DG(18:1(12Z)-2OH(9,10)/0:0/a-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-12:0/PGF1alpha/0:0)
DG(i-12:0/PGF1alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-12:0/PGF1alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(PGF1alpha/i-12:0/0:0)
DG(PGF1alpha/i-12:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGF1alpha/i-12:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-12:0/0:0/PGF1alpha)
DG(i-12:0/0:0/PGF1alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(PGF1alpha/0:0/i-12:0)
DG(PGF1alpha/0:0/i-12:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/18:1(12Z)-2OH(9,10)/0:0)
DG(i-15:0/18:1(12Z)-2OH(9,10)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-15:0/18:1(12Z)-2OH(9,10)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:1(12Z)-2OH(9,10)/i-15:0/0:0)
DG(18:1(12Z)-2OH(9,10)/i-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:1(12Z)-2OH(9,10)/i-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/0:0/18:1(12Z)-2OH(9,10))
DG(i-15:0/0:0/18:1(12Z)-2OH(9,10)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:1(12Z)-2OH(9,10)/0:0/i-15:0)
DG(18:1(12Z)-2OH(9,10)/0:0/i-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
5,6-Epoxy-3-hydroxy-3-methoxy-4,6-didehydro-5,6-dihydro-4,6-cyclo-5,6-seco-beta,beta-caroten-5-one
3,4-Didehydro-1,1,2,2-tetrahydro-1,1-dimethoxy-psi,psi-caroten-4-one
5,8-Epoxy-3-hydroxy-3-methoxy-4,6-didehydro-5,8-dihydro-4,6-cyclo-5,6-seco-beta,beta-caroten-5-one
3-methoxy-3-hydroxy-5,8-epoxy-5,8-dihydro-5,6-seco-4,6-cyclo-beta,beta-caroten-5-one|3-Methoxy-3-hydroxy-5,8-epoxy-5,8-dihydro-5,6-seco-4,6-cyclo-??,??-caroten-5-one
(24R)-241-O-beta-(4-O-methyl-D-xylopyranosyl)-24-methyl-5alpha-cholestane-3beta,4beta,6alpha,15beta,241-pentol|certonardoside H2
7alpha-oleyloxy-6beta,12-dihydroxy-abieta-8,12-diene-11,14-dione
2-methoxy-3,1-dihydroxy-beta,psi-caroten-4-one|2-methoxyflexixanthin
Muricatalin
Annomuricin A
Muricatin A
Muricatocin B
Muricatin B
Annomuricin-D-one
Annopentocin A
Annopentocin C
Annopentocin B
Muricapentocin
Muricatalicin
5,6-Epoxy-3-hydroxy-3-methoxy-4,5-didehydro-5,6-dihydro-4,6-cyclo-5,6-seco-beta,beta-caroten-5-one
(9Z)-5,6-Epoxy-3-hydroxy-3-methoxy-4,5-didehydro-5,6-dihydro-4,6-cyclo-5,6-seco-beta,beta-caroten-5-one
5,8-Epoxy-3-hydroxy-3-methoxy-4,5-didehydro-5,8-dihydro-4,6-cyclo-5,6-seco-beta,beta-caroten-5-one
4-[2-(1-docosylpyridin-1-ium-4-yl)ethenyl]-N,N-dimethylaniline,bromide
1,3-Dilinolenoylglycerol
A 1,3-diglyceride in which both acyl groups are specified as linolenoyl.
1-(Hydroxymethyl)-1,2-ethanediyl bis((9Z,12Z,15Z)-9,12,15-octadecatrienoate)
2,3-Dilinolenoyl-sn-glycerol
A 2,3-diacyl-sn-glycerol in which both acyl groups are specified as linolenoyl.
[(E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C33H61N2O6P (612.4267015999999)
[2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxydodecyl] 2-(trimethylazaniumyl)ethyl phosphate
C33H61N2O6P (612.4267015999999)
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C33H61N2O6P (612.4267015999999)
[(4E,8E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxydodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C33H61N2O6P (612.4267015999999)
[3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]decyl] 2-(trimethylazaniumyl)ethyl phosphate
C33H61N2O6P (612.4267015999999)
[(E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxydodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C33H61N2O6P (612.4267015999999)
[(E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C33H61N2O6P (612.4267015999999)
(1-decanoyloxy-3-hydroxypropan-2-yl) (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
(1-dodecanoyloxy-3-hydroxypropan-2-yl) (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]octyl] 2-(trimethylazaniumyl)ethyl phosphate
C33H61N2O6P (612.4267015999999)
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C33H61N2O6P (612.4267015999999)
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropyl] (11Z,14Z)-icosa-11,14-dienoate
[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate
(1-hydroxy-3-tetradecanoyloxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (Z)-octadec-9-enoate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C33H61N2O6P (612.4267015999999)
[(4E,8E,12E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C33H61N2O6P (612.4267015999999)
(1-hydroxy-3-octanoyloxypropan-2-yl) (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate
[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate
[1-carboxy-3-[3-dodecanoyloxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate
[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium
[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium
[(2S)-1-hydroxy-3-tetradecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[1-carboxy-3-[2-decanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-dodecanoyloxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-3-hydroxy-2-tetradecanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate
[(2S)-1-hydroxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2S)-3-hydroxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate
[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
[1-carboxy-3-[2-[(E)-tetradec-9-enoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(E)-tetradec-9-enoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (E)-icos-11-enoate
[1-carboxy-3-[3-tetradecanoyloxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-pentadecanoyloxypropoxy]propyl]-trimethylazanium
[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
[(2S)-3-hydroxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[1-carboxy-3-[3-decanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-tetradecanoyloxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-pentadecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-dodecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(Z)-docos-13-enoyl]oxy-3-propanoyloxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-pentanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(Z)-hexadec-9-enoyl]oxy-3-nonanoyloxypropoxy]propyl]-trimethylazanium
2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[3-[3-butanoyloxy-2-[(Z)-henicos-11-enoyl]oxypropoxy]-1-carboxypropyl]-trimethylazanium
[1-carboxy-3-[3-heptanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(Z)-heptadec-9-enoyl]oxy-3-octanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(Z)-tetradec-9-enoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-hexanoyloxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
2-[[2-heptanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(Z)-icos-11-enoyl]oxy-3-pentanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-decanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
2-[carboxy-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium
1-(9Z-hexadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerol
1-(9Z-tetradecenoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycerol
1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycerol
1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z,12Z-octadecadienoyl)-sn-glycerol
diacylglycerol 36:6
A diglyceride in which the two acyl groups contain a total of 36 carbons and 6 double bonds.
TG(36:6)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
TG(35:6)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved