Exact Mass: 612.2206656000001
Exact Mass Matches: 612.2206656000001
Found 22 metabolites which its exact mass value is equals to given mass value 612.2206656000001
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Protochlorophyllide
C35H32MgN4O5 (612.2223081999999)
Protochlorophyllide is found in fruits. Protochlorophyllide is isolated from the seed husks of Cucurbita pepo Chlorophyll itself is bound to proteins and can transfer the absorbed energy in the required direction. Protochlorophyllide, differently, mostly occurs in the free form and under light conditions acts as photosensitizer, forming highly toxic free radicals. Hence plants need an efficient mechanism of regulating the amount of chlorophyll precursor. In angiosperms, this is done at the step of D-Aminolevulinic acid (ALA), one of the intermediate compounds in the biosynthesis pathway. Plants that are fed by ALA accumulate high and toxic levels of protochlorophyllide, so do the mutants with the damaged regulatory system. Despite of numerous past attempts to find the mutant that overacumulates protochlorophyllide under usual conditions, only one such gene (flu) is currently (2009) known. Flu (first described in ) is a nuclear - encoded, chloroplast - located protein that appears containing only protein - protein interaction sites. It is currently not know which other proteins interact through this linker. The regulatory protein is a transmembrane protein that is located in the thylakoid membrane. Later it was discovered that Tigrina mutants in barley, known long time ago, are also mutated in the same gene It is not obvious why no mutants of any other gene were observed; maybe mutations in other proteins, involved into the regulatory chain, are fatal. Flu is a single gene, not a member of the gene family. Protochlorophyllide , more accurate monovinyl protochlorophyllide, is an immediate precursor of chlorophyll a that lacks the phytol side chain of chlorophyll. Unlike chlorophyll, protochlorophyllide is highly fluorescent; mutants that accumulate it glow in red if irradiated by the blue lightIn Angiosperms, the last step, conversion of protochlorophyllide to chlorophyll, is light - dependent and such plants are pale (etiolated) if grown in the darkness. Gymnosperms, algae, and photosynthetic bacteria additionally have another, light - independent enzyme and grow green in the darkness as well. The enzyme that converts protochlorophyllide to chlorophyll is protochlorophyllide reductase , EC 1.3.1.33. There are two structurally unrelated proteins with this activity: the light - dependent and the dark - operative. The light dependent reductase needs light to operate. The dark - operative version is a completely different protein, consisting of three subunits that exhibit significant sequence similarity to the three subunits of nitrogenase, which catalyzes the formation of ammonia from dinitrogen. This enzyme might be evolutionary older but (being similar to nitrogenase) is highly sensitive to free oxygen and does not work if its concentration exceeds about 3 \\%. Hence the alternative, light dependent version needed to evolve
13(1)-Oxo-Mg-protoporphyrin IX 13-monomethyl ester
C35H32MgN4O5 (612.2223081999999)
ferrileghemoglobin
Ferrileghemoglobin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Ferrileghemoglobin can be found in a number of food items such as lotus, epazote, wax apple, and yellow bell pepper, which makes ferrileghemoglobin a potential biomarker for the consumption of these food products.
ferroleghemoglobin
Ferroleghemoglobin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Ferroleghemoglobin can be found in a number of food items such as blackcurrant, white mustard, mung bean, and garland chrysanthemum, which makes ferroleghemoglobin a potential biomarker for the consumption of these food products.
Divinylprotochlorophyllide; 2,4-Divinylprotochlorophyllide; Mg-2,4-Divinyl-phaeoporphyrin a5-monomethylester; 3,8-Divinyl protochlorophyllide a
C35H32MgN4O5+2 (612.2223081999999)
FilixicacidABA
Ralimetinib Mesylate
C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor
Ispinesib mesylate
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent
magnesium;3-[(11E,12R,21S,22S)-16-ethenyl-11-ethylidene-3-methoxycarbonyl-12,17,21,26-tetramethyl-4-oxido-23,25-diaza-7,24-diazanidahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,13(25),14,16,18,20(23)-decaen-22-yl]propanoate
C35H32MgN4O5-2 (612.2223081999999)
magnesium;3-[(21S,22S)-16-ethenyl-11-ethyl-3-methoxycarbonyl-12,17,21,26-tetramethyl-4-oxido-23,25-diaza-7,24-diazanidahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1(23),2(6),3,5(26),8,10(25),11,13,15,17,19-undecaen-22-yl]propanoate
C35H32MgN4O5-2 (612.2223081999999)
bacteriochlorophyllide g(2-)
C35H32MgN4O5 (612.2223081999999)
A cyclic tetrapyrrole anion that is obtained from bacteriochlorophyllide g via deprotonation of the carboxy group and formation of a carbide ion. It is the major microspecies at pH 7.3 (according to Marvin v 6.2.0.).
(6-{[1,7-bis(3,4-dihydroxyphenyl)-5-oxoheptan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl benzoate
[(2r,3s,4s,5r,6r)-6-{[(3s)-1,7-bis(3,4-dihydroxyphenyl)-5-oxoheptan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl benzoate
(2s,17s)-8,9,13,14-tetramethoxy-3-methyl-24,26-dioxa-3,18-diazadecacyclo[19.13.2.1⁴,¹².0²,¹⁷.0⁶,¹¹.0¹⁸,³⁵.0²³,²⁷.0²⁸,³⁶.0²⁹,³⁴.0¹⁶,³⁷]heptatriaconta-1(35),4,6(11),7,9,12(37),13,15,21,23(27),28(36),29(34),30,32-tetradecaene
C38H32N2O6 (612.2260252000001)