Exact Mass: 599.2859186
Exact Mass Matches: 599.2859186
Found 253 metabolites which its exact mass value is equals to given mass value 599.2859186
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Delphinine
Lividomycin B
A member of the class of lividomycins that is paromomycin in which the 2-amino-2-deoxyglucopyranosyl moiety is lacking the hydroxy group at position 3.
Gluten exorphin A5
Gluten exorphin A5 is a pentapeptide with the sequence Gly-Tyr-Tyr-Pro-Thr. Gluten exorphins are a group of opioid peptides which are formed during digestion of the gluten protein. It has been hypothesized that people with autism and schizophrenia have abnormal leakage from the gut of these compounds, which then pass into the brain and disrupt brain function. This is partly the basis for the gluten-free, casein-free diet. The scientific evidence for this diet and its effects is still disputed.
Penitrem E
PC(2:0/20:4(6E,8Z,11Z,14Z)+=O(5))
PC(2:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:4(6E,8Z,11Z,14Z)+=O(5)/2:0)
PC(20:4(6E,8Z,11Z,14Z)+=O(5)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,14Z)+=O(5)/2:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(2:0/20:4(5Z,8Z,11Z,13E)+=O(15))
PC(2:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:4(5Z,8Z,11Z,13E)+=O(15)/2:0)
PC(20:4(5Z,8Z,11Z,13E)+=O(15)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,13E)+=O(15)/2:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))
PC(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/2:0)
PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/2:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))
PC(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/2:0)
PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/2:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(2:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))
PC(2:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/2:0)
PC(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/2:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(2:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))
PC(2:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(2:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/2:0)
PC(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/2:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/2:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
Obyanamide
A cyclodepsipeptide isolated from Lyngbya confervoides and has been shown to exhibit antineoplastic activity.
Regelidine
Regelidine is a sesquiterpene alkaloid that is isolated from the stem of Tripterygium regelii. It has a role as a plant metabolite. It is a sesquiterpene alkaloid, a benzoate ester, an organic heterotricyclic compound, an oxacycle, a bridged compound, a tertiary alcohol, a pyridine alkaloid and a dihydroagarofuran sesquiterpenoid. It is functionally related to a nicotinic acid. (3R,5R,5aS,6S,9S,9aS,10R)-5,6-bis(benzoyloxy)-9-hydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methano-1-benzoxepin-10-yl pyridine-3-carboxylate is a natural product found in Tripterygium regelii and Tripterygium wilfordii with data available. A sesquiterpene alkaloid that is isolated from the stem of Tripterygium regelii. Regelidine is a natural product isolated from the stems of Tripterygium regelii[1].
N1,N5-di-p-coumaroyl-N10-caffeoylspermidine
C34H37N3O7 (599.2631372000001)
4-O-methylepelmycin D|7-O-L-rhodosaminyl-4-O-methyl-epsilon-rhodomycinone
Tyr Phe Asp Arg
C28H37N7O8 (599.2703482000001)
Asp Phe Arg Tyr
C28H37N7O8 (599.2703482000001)
Asp Phe Tyr Arg
C28H37N7O8 (599.2703482000001)
Asp Arg Phe Tyr
C28H37N7O8 (599.2703482000001)
Asp Arg Tyr Phe
C28H37N7O8 (599.2703482000001)
Asp Tyr Phe Arg
C28H37N7O8 (599.2703482000001)
Asp Tyr Arg Phe
C28H37N7O8 (599.2703482000001)
Mivacurium Chloride Impurity 3
Phe Asp Arg Tyr
C28H37N7O8 (599.2703482000001)
Phe Asp Tyr Arg
C28H37N7O8 (599.2703482000001)
Phe Phe Met Arg
C29H41N7O5S (599.2889736000001)
Phe Phe Arg Met
C29H41N7O5S (599.2889736000001)
Phe Phe Thr Trp
Phe Phe Trp Thr
Phe Met Phe Arg
C29H41N7O5S (599.2889736000001)
Phe Met Arg Phe
C29H41N7O5S (599.2889736000001)
Phe Arg Asp Tyr
C28H37N7O8 (599.2703482000001)
Phe Arg Phe Met
C29H41N7O5S (599.2889736000001)
Phe Arg Met Phe
C29H41N7O5S (599.2889736000001)
Phe Arg Tyr Asp
C28H37N7O8 (599.2703482000001)
Phe Thr Phe Trp
Phe Thr Trp Phe
Phe Trp Phe Thr
Phe Trp Thr Phe
Phe Tyr Asp Arg
C28H37N7O8 (599.2703482000001)
Phe Tyr Arg Asp
C28H37N7O8 (599.2703482000001)
Met Phe Phe Arg
C29H41N7O5S (599.2889736000001)
Met Phe Arg Phe
C29H41N7O5S (599.2889736000001)
Met Met Arg Tyr
C25H41N7O6S2 (599.2559606000001)
Met Met Tyr Arg
C25H41N7O6S2 (599.2559606000001)
Met Arg Phe Phe
C29H41N7O5S (599.2889736000001)
Met Arg Met Tyr
C25H41N7O6S2 (599.2559606000001)
Met Arg Tyr Met
C25H41N7O6S2 (599.2559606000001)
Met Thr Trp Tyr
Met Thr Tyr Trp
Met Trp Thr Tyr
Met Trp Tyr Thr
Met Tyr Met Arg
C25H41N7O6S2 (599.2559606000001)
Met Tyr Arg Met
C25H41N7O6S2 (599.2559606000001)
Met Tyr Thr Trp
Met Tyr Trp Thr
Arg Asp Phe Tyr
C28H37N7O8 (599.2703482000001)
Arg Asp Tyr Phe
C28H37N7O8 (599.2703482000001)
Arg Phe Asp Tyr
C28H37N7O8 (599.2703482000001)
Arg Phe Phe Met
C29H41N7O5S (599.2889736000001)
Arg Phe Met Phe
C29H41N7O5S (599.2889736000001)
Arg Phe Tyr Asp
C28H37N7O8 (599.2703482000001)
Arg Met Phe Phe
C29H41N7O5S (599.2889736000001)
Arg Met Met Tyr
C25H41N7O6S2 (599.2559606000001)
Arg Met Tyr Met
C25H41N7O6S2 (599.2559606000001)
Arg Val Tyr Tyr
Arg Tyr Asp Phe
C28H37N7O8 (599.2703482000001)
Arg Tyr Phe Asp
C28H37N7O8 (599.2703482000001)
Arg Tyr Met Met
C25H41N7O6S2 (599.2559606000001)
Arg Tyr Val Tyr
Arg Tyr Tyr Val
Thr Phe Phe Trp
Thr Phe Trp Phe
Thr Met Trp Tyr
Thr Met Tyr Trp
Thr Trp Phe Phe
Thr Trp Met Tyr
Thr Trp Tyr Met
Thr Tyr Met Trp
Thr Tyr Trp Met
Val Arg Tyr Tyr
Val Tyr Arg Tyr
Val Tyr Tyr Arg
Trp Phe Phe Thr
Trp Phe Thr Phe
Trp Met Thr Tyr
Trp Met Tyr Thr
Trp Thr Phe Phe
Trp Thr Met Tyr
Trp Thr Tyr Met
Trp Tyr Met Thr
Trp Tyr Thr Met
Tyr Asp Phe Arg
C28H37N7O8 (599.2703482000001)
Tyr Asp Arg Phe
C28H37N7O8 (599.2703482000001)
Tyr Phe Arg Asp
C28H37N7O8 (599.2703482000001)
Tyr Met Met Arg
C25H41N7O6S2 (599.2559606000001)
Tyr Met Arg Met
C25H41N7O6S2 (599.2559606000001)
Tyr Met Thr Trp
Tyr Met Trp Thr
Tyr Arg Asp Phe
C28H37N7O8 (599.2703482000001)
Tyr Arg Phe Asp
C28H37N7O8 (599.2703482000001)
Tyr Arg Met Met
C25H41N7O6S2 (599.2559606000001)
Tyr Arg Val Tyr
Tyr Arg Tyr Val
Tyr Thr Met Trp
Tyr Thr Trp Met
Tyr Val Arg Tyr
Tyr Val Tyr Arg
Tyr Trp Met Thr
Tyr Trp Thr Met
Tyr Tyr Arg Val
Tyr Tyr Val Arg
2-(Carboxymethoxy)-5-[(2S)-2-({(2S)-2-[(3-carboxypropanoyl)amino]-3-phenylpropanoyl}amino)-3-oxo-3-(pentylamino)propyl]benzoic acid
Methyl (4R)-2-ethyl-2,5,12-trihydroxy-7-methoxy-6,11-dioxo-4-{[2,3,6-trideoxy-3-(dimethylamino)-beta-D-ribo-hexopyranosyl]oxy}-1H,2H,3H,4H,6H,11H-tetracene-1-carboxylate
15,16,33,33-Tetramethyl-24-methylidene-10-prop-1-en-2-yl-7,11,32-trioxa-18-azadecacyclo[25.4.2.02,16.05,15.06,8.06,12.017,31.019,30.022,29.025,28]tritriaconta-17(31),19(30),20,22(29)-tetraene-5,9,28-triol
N-[(5S,6R,9S)-8-[(2-fluorophenyl)methyl]-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-3-methoxybenzenesulfonamide
N-[(5R,6S,9R)-8-[(2-fluorophenyl)methyl]-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-3-methoxybenzenesulfonamide
(3R)-2-[(R)-tert-butylsulfinyl]-4-[3-(4-cyanophenyl)phenyl]-3-(2-hydroxyethyl)-N-[2-(1-piperidinyl)ethyl]-1,3-dihydropyrrolo[3,4-c]pyridine-6-carboxamide
N-[(5R,6R,9S)-8-[(2-fluorophenyl)methyl]-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-3-methoxybenzenesulfonamide
N-[(5S,6R,9R)-8-[(2-fluorophenyl)methyl]-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-3-methoxybenzenesulfonamide
(3S)-2-[(S)-tert-butylsulfinyl]-4-[3-(3-cyanophenyl)phenyl]-3-(2-hydroxyethyl)-N-[2-(1-piperidinyl)ethyl]-1,3-dihydropyrrolo[3,4-c]pyridine-6-carboxamide
2-[(2S,4aR,12aR)-8-[[(2-chloroanilino)-oxomethyl]amino]-5-methyl-6-oxo-2,3,4,4a,12,12a-hexahydropyrano[2,3-c][1,5]benzoxazocin-2-yl]-N-[3-(4-morpholinyl)propyl]acetamide
2-[(2S,4aR,12aS)-8-[(2-chlorophenyl)carbamoylamino]-5-methyl-6-oxo-2,3,4,4a,12,12a-hexahydropyrano[2,3-c][1,5]benzoxazocin-2-yl]-N-(3-morpholin-4-ylpropyl)acetamide
2-[(2R,4aR,12aS)-8-[[(2-chloroanilino)-oxomethyl]amino]-5-methyl-6-oxo-2,3,4,4a,12,12a-hexahydropyrano[2,3-c][1,5]benzoxazocin-2-yl]-N-[3-(4-morpholinyl)propyl]acetamide
2-[(2S,4aS,12aR)-8-[(2-chlorophenyl)carbamoylamino]-5-methyl-6-oxo-2,3,4,4a,12,12a-hexahydropyrano[2,3-c][1,5]benzoxazocin-2-yl]-N-(3-morpholin-4-ylpropyl)acetamide
N-[(2S,3R)-2-[[[(4-fluoroanilino)-oxomethyl]-methylamino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3-(4-morpholinyl)propanamide
N-[(2S,3R)-2-[[[(4-fluoroanilino)-oxomethyl]-methylamino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3-(4-morpholinyl)propanamide
N-[(5S,6S,9R)-8-[(2-fluorophenyl)methyl]-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-3-methoxybenzenesulfonamide
N-[(5R,6R,9R)-8-[(2-fluorophenyl)methyl]-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-3-methoxybenzenesulfonamide
(3R)-2-[(R)-tert-butylsulfinyl]-4-[3-(3-cyanophenyl)phenyl]-3-(2-hydroxyethyl)-N-[2-(1-piperidinyl)ethyl]-1,3-dihydropyrrolo[3,4-c]pyridine-6-carboxamide
2-[(2R,4aR,12aR)-8-[[(2-chloroanilino)-oxomethyl]amino]-5-methyl-6-oxo-2,3,4,4a,12,12a-hexahydropyrano[2,3-c][1,5]benzoxazocin-2-yl]-N-[3-(4-morpholinyl)propyl]acetamide
2-[(2S,4aS,12aS)-8-[[(2-chloroanilino)-oxomethyl]amino]-5-methyl-6-oxo-2,3,4,4a,12,12a-hexahydropyrano[2,3-c][1,5]benzoxazocin-2-yl]-N-[3-(4-morpholinyl)propyl]acetamide
2-[(2R,4aS,12aS)-8-[[(2-chloroanilino)-oxomethyl]amino]-5-methyl-6-oxo-2,3,4,4a,12,12a-hexahydropyrano[2,3-c][1,5]benzoxazocin-2-yl]-N-[3-(4-morpholinyl)propyl]acetamide
N-[(5S,6S,9S)-8-[(2-fluorophenyl)methyl]-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-3-methoxybenzenesulfonamide
(3S)-2-[(S)-tert-butylsulfinyl]-4-[3-(4-cyanophenyl)phenyl]-3-(2-hydroxyethyl)-N-[2-(1-piperidinyl)ethyl]-1,3-dihydropyrrolo[3,4-c]pyridine-6-carboxamide
2-[(2R,4aS,12aR)-8-[[(2-chloroanilino)-oxomethyl]amino]-5-methyl-6-oxo-2,3,4,4a,12,12a-hexahydropyrano[2,3-c][1,5]benzoxazocin-2-yl]-N-[3-(4-morpholinyl)propyl]acetamide
2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-propanoyloxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-pentanoyloxypropoxy]phosphoryl]oxypropanoic acid
1-octadecanoyl-sn-glycero-3-phospho-D-myo-inositol(1-)
C27H52O12P (599.3196221999999)
A lysophosphatidylinositol 18:0(1-) that is a 1-acyl-sn-glycero-3-phospho-D-myo-inositol which has octadecanoyl as the acyl group and a free hydroxy group at position 2 of the glycerol moiety.
[(1e,7e,9e)-3-(2-aminoethyl)-1-(3-ethyl-6-oxo-2,3-dihydropyran-2-yl)-3,6-dihydroxy-10-{3-[(2-methylpropanoyl)oxy]cyclohexyl}deca-1,7,9-trien-4-yl]oxyphosphonic acid
(1s,2r,5s,6s,8r,9s,10r,12s,15r,16s,25r,27s,28r)-15,16,33,33-tetramethyl-24-methylidene-10-(prop-1-en-2-yl)-7,11,32-trioxa-18-azadecacyclo[25.4.2.0²,¹⁶.0⁵,¹⁵.0⁶,⁸.0⁶,¹².0¹⁷,³¹.0¹⁹,³⁰.0²²,²⁹.0²⁵,²⁸]tritriaconta-17(31),19,21,29-tetraene-5,9,28-triol
(1r,2r,3s,5r,7s,10r,11r,12s,16s,17s,18r,19s)-8-ethyl-17-hydroxy-3,12,16-trimethoxy-10-(methoxymethyl)-6-oxa-8-azahexacyclo[15.2.1.0²,⁷.0²,¹¹.0⁵,¹⁰.0¹⁴,¹⁹]icos-13-en-18-yl 4-methoxybenzoate
n-{3-[n-(4-{[3-(3,4-dihydroxyphenyl)-1-hydroxyprop-2-en-1-ylidene]amino}butyl)-3-(4-hydroxyphenyl)prop-2-enamido]propyl}-3-(4-hydroxyphenyl)prop-2-enimidic acid
C34H37N3O7 (599.2631372000001)
(1s,2r,3r,4r,5s,6s,8s,9r,10r,13s,16s,17r,18s)-8-(acetyloxy)-5-hydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl benzoate
5,7-bis(benzoyloxy)-2-hydroxy-2,6,10,10-tetramethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-12-yl pyridine-3-carboxylate
(2e)-n-{3-[(2e)-3-(3,4-dihydroxyphenyl)-n-(4-{[(2e)-1-hydroxy-3-(4-hydroxyphenyl)prop-2-en-1-ylidene]amino}butyl)prop-2-enamido]propyl}-3-(4-hydroxyphenyl)prop-2-enimidic acid
C34H37N3O7 (599.2631372000001)
(2s,5s,8s,11s,15s)-5-benzyl-15-ethyl-4,17-dihydroxy-8-isopropyl-2,6,9,11-tetramethyl-12-oxa-20-thia-3,6,9,16,21-pentaazabicyclo[16.2.1]henicosa-1(21),3,16,18-tetraene-7,10,13-trione
(2s,3r,8r,12s,15s,21s,22r)-12,21-dihydroxy-8-(2-hydroxypropan-2-yl)-2,3,23,23,25,25-hexamethyl-7,24-dioxa-31-azaoctacyclo[15.14.0.0²,¹⁵.0³,¹².0⁶,¹¹.0¹⁸,³⁰.0²⁰,²⁸.0²²,²⁷]hentriaconta-1(17),5,10,18,20(28),26,29-heptaen-9-one
(1s,2r,5s,6r,8r,9s,10r,12s,15r,16s,24r,25s,27s,28s)-5,9-dihydroxy-15,16,24,33,33-pentamethyl-10-(prop-1-en-2-yl)-7,11,32-trioxa-18-azadecacyclo[25.4.2.0²,¹⁶.0⁵,¹⁵.0⁶,⁸.0⁶,¹².0¹⁷,³¹.0¹⁹,³⁰.0²²,²⁹.0²⁵,²⁸]tritriaconta-17(31),19,21,29-tetraen-23-one
(2e)-n-{3-[(2e)-n-(4-{[(2e)-3-(3,4-dihydroxyphenyl)-1-hydroxyprop-2-en-1-ylidene]amino}butyl)-3-(4-hydroxyphenyl)prop-2-enamido]propyl}-3-(4-hydroxyphenyl)prop-2-enimidic acid
C34H37N3O7 (599.2631372000001)
2-deacetyltaxine a
{"Ingredient_id": "HBIN005508","Ingredient_name": "2-deacetyltaxine a","Alias": "NA","Ingredient_formula": "C33H45NO9","Ingredient_Smile": "CC1=C2C(C(=O)C3(CC(=CC(C(C2(C)C)CC1OC(=O)C)O)C(CC3O)OC(=O)C(C(C4=CC=CC=C4)N(C)C)O)C)O","Ingredient_weight": "599.7 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "4779","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101676778","DrugBank_id": "NA"}
aristoloin ii
{"Ingredient_id": "HBIN016814","Ingredient_name": "aristoloin ii","Alias": "NA","Ingredient_formula": "C36H41NO7","Ingredient_Smile": "CC1(CCCC2(C1CCC34C2CCC(C3)C(C4)(COC(=O)C5=CC6=C(C7=C5C(=CC8=CC=CC=C87)[N+](=O)[O-])OCO6)O)C)C","Ingredient_weight": "599.7 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1722","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101260746","DrugBank_id": "NA"}
methyl 4-{[(2r,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]oxy}-2-ethyl-2,5,12-trihydroxy-7-methoxy-6,11-dioxo-3,4-dihydro-1h-tetracene-1-carboxylate
(1s,4r,5s,23s,26s,30r)-17,26-dihydroxy-4,5,13,13,15,15,31,31-octamethyl-14,32,33-trioxa-7-azanonacyclo[28.2.1.0¹,²⁷.0⁴,²⁶.0⁵,²³.0⁶,²¹.0⁸,²⁰.0¹⁰,¹⁸.0¹¹,¹⁶]tritriaconta-6(21),8,10(18),11,19,27-hexaen-29-one
5-amino-2-(aminomethyl)-6-({5-[(3,5-diamino-2-{[3-amino-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxycyclohexyl)oxy]-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl}oxy)oxane-3,4-diol
[(2s,4s,5r,6r)-4-(chloromethyl)-4,5-dihydroxy-6-[(1e,3e)-5-[(2s,3s,5r,6r)-5-{[(2z,4s)-1-hydroxy-4-[(2-methylpropanoyl)oxy]pent-2-en-1-ylidene]amino}-3,6-dimethyloxan-2-yl]-3-methylpenta-1,3-dien-1-yl]oxan-2-yl]acetic acid
C30H46ClNO9 (599.2860936000001)
8-ethyl-17-hydroxy-3,12,16-trimethoxy-10-(methoxymethyl)-6-oxa-8-azahexacyclo[15.2.1.0²,⁷.0²,¹¹.0⁵,¹⁰.0¹⁴,¹⁹]icos-13-en-18-yl 4-methoxybenzoate
(2s,5s,8s,11s,15r)-5-benzyl-15-ethyl-4,17-dihydroxy-8-isopropyl-2,6,9,11-tetramethyl-12-oxa-20-thia-3,6,9,16,21-pentaazabicyclo[16.2.1]henicosa-1(21),3,16,18-tetraene-7,10,13-trione
(1s,2s,5s,6s,7s,9r,12r)-5,7-bis(benzoyloxy)-2-hydroxy-2,6,10,10-tetramethyl-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-12-yl pyridine-3-carboxylate
17,26-dihydroxy-4,5,13,13,15,15,31,31-octamethyl-14,32,33-trioxa-7-azanonacyclo[28.2.1.0¹,²⁷.0⁴,²⁶.0⁵,²³.0⁶,²¹.0⁸,²⁰.0¹⁰,¹⁸.0¹¹,¹⁶]tritriaconta-6(21),8,10(18),11,19,27-hexaen-29-one
(3r,6s,8r,9s,10r,12s,13s,21s,22r,24s)-22-(2-hydroxypropan-2-yl)-2,3-dimethyl-25-methylidene-8-(prop-1-en-2-yl)-7,11-dioxa-31-azanonacyclo[16.13.0.0²,¹⁶.0³,¹³.0⁶,¹².0¹⁰,¹².0¹⁹,³⁰.0²⁰,²⁷.0²¹,²⁴]hentriaconta-1(18),16,19,27,29-pentaene-9,13,21-triol
(1s,4r,5s,16r,17s,23s,26s,30r)-17,26-dihydroxy-4,5,13,13,15,15,31,31-octamethyl-14,32,33-trioxa-7-azanonacyclo[28.2.1.0¹,²⁷.0⁴,²⁶.0⁵,²³.0⁶,²¹.0⁸,²⁰.0¹⁰,¹⁸.0¹¹,¹⁶]tritriaconta-6(21),8,10(18),11,19,27-hexaen-29-one
methyl (1s,2s,4s)-4-{[(2r,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]oxy}-2-ethyl-2,5,12-trihydroxy-7-methoxy-6,11-dioxo-3,4-dihydro-1h-tetracene-1-carboxylate
[4-(chloromethyl)-4,5-dihydroxy-6-{5-[5-({1-hydroxy-4-[(2-methylpropanoyl)oxy]pent-2-en-1-ylidene}amino)-3,6-dimethyloxan-2-yl]-3-methylpenta-1,3-dien-1-yl}oxan-2-yl]acetic acid
C30H46ClNO9 (599.2860936000001)
17,26-dihydroxy-4,5,13,13,15,15,31,31-octamethyl-14,32,33-trioxa-7-azanonacyclo[28.2.1.0¹,²⁷.0⁴,²⁶.0⁵,²³.0⁶,²¹.0⁸,²⁰.0¹⁰,¹⁸.0¹¹,¹⁶]tritriaconta-6(21),8,10(18),11(16),19,27-hexaen-29-one
(1r,2s,3e,5s,7s,8s,10r,13s)-13-(acetyloxy)-2,7,10-trihydroxy-8,12,15,15-tetramethyl-9-oxotricyclo[9.3.1.1⁴,⁸]hexadeca-3,11-dien-5-yl (2r,3s)-3-(dimethylamino)-2-hydroxy-3-phenylpropanoate
(1s,4r,5s,17r,23s,26s,30r)-17,26-dihydroxy-4,5,13,13,15,15,31,31-octamethyl-14,32,33-trioxa-7-azanonacyclo[28.2.1.0¹,²⁷.0⁴,²⁶.0⁵,²³.0⁶,²¹.0⁸,²⁰.0¹⁰,¹⁸.0¹¹,¹⁶]tritriaconta-6(21),8,10(18),11(16),19,27-hexaen-29-one
13-(acetyloxy)-2,7,10-trihydroxy-8,12,15,15-tetramethyl-9-oxotricyclo[9.3.1.1⁴,⁸]hexadeca-3,11-dien-5-yl 3-(dimethylamino)-2-hydroxy-3-phenylpropanoate
(2s,3r,6s,8r,9s,10r,12r,13s,21s,22r,24r)-22-(2-hydroxypropan-2-yl)-2,3-dimethyl-25-methylidene-8-(prop-1-en-2-yl)-7,11-dioxa-31-azanonacyclo[16.13.0.0²,¹⁶.0³,¹³.0⁶,¹².0¹⁰,¹².0¹⁹,³⁰.0²⁰,²⁷.0²¹,²⁴]hentriaconta-1(18),16,19,27,29-pentaene-9,13,21-triol
(1s,4r,5s,16s,17r,23s,26s,30r)-17,26-dihydroxy-4,5,13,13,15,15,31,31-octamethyl-14,32,33-trioxa-7-azanonacyclo[28.2.1.0¹,²⁷.0⁴,²⁶.0⁵,²³.0⁶,²¹.0⁸,²⁰.0¹⁰,¹⁸.0¹¹,¹⁶]tritriaconta-6(21),8,10(18),11,19,27-hexaen-29-one
(1s,2r,3r,4r,5s,6s,8r,13s,16s,17r,18r)-8-(acetyloxy)-5-hydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl benzoate
5-benzyl-15-ethyl-4,17-dihydroxy-8-isopropyl-2,6,9,11-tetramethyl-12-oxa-20-thia-3,6,9,16,21-pentaazabicyclo[16.2.1]henicosa-1(21),3,16,18-tetraene-7,10,13-trione
22-(2-hydroxypropan-2-yl)-2,3-dimethyl-25-methylidene-8-(prop-1-en-2-yl)-7,11-dioxa-31-azanonacyclo[16.13.0.0²,¹⁶.0³,¹³.0⁶,¹².0¹⁰,¹².0¹⁹,³⁰.0²⁰,²⁷.0²¹,²⁴]hentriaconta-1(18),16,19,27,29-pentaene-9,13,21-triol
n-{3-[3-(3,4-dihydroxyphenyl)-n-(4-{[1-hydroxy-3-(4-hydroxyphenyl)prop-2-en-1-ylidene]amino}butyl)prop-2-enamido]propyl}-3-(4-hydroxyphenyl)prop-2-enimidic acid
C34H37N3O7 (599.2631372000001)
[(1s,4r,9r,10r,13r,14r)-14-hydroxy-5,5,9-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]methyl 6-nitro-2h-phenanthro[3,4-d][1,3]dioxole-5-carboxylate
(2s,3r,6s,8r,9s,10r,12s,13s,21r,22r,24r)-22-(2-hydroxypropan-2-yl)-2,3-dimethyl-25-methylidene-8-(prop-1-en-2-yl)-7,11-dioxa-31-azanonacyclo[16.13.0.0²,¹⁶.0³,¹³.0⁶,¹².0¹⁰,¹².0¹⁹,³⁰.0²⁰,²⁷.0²¹,²⁴]hentriaconta-1(18),16,19,27,29-pentaene-9,13,21-triol
(1s,2e,4s,15e,19r,20s,23s,25s,28r,30r,32r,33s)-11,19,32-trihydroxy-23-methoxy-2-methyl-6,17,21,34-tetraoxa-12-azahexacyclo[28.3.1.0¹,²⁵.0⁴,²⁰.0¹⁰,¹⁴.0²⁸,³³]tetratriaconta-2,10(14),11,15,26-pentaene-7,13,22-trione
(1s,2r,5s,8r,9s,10r,12s,15r,24r,25s,27s,28s)-5,9-dihydroxy-15,16,24,33,33-pentamethyl-10-(prop-1-en-2-yl)-7,11,32-trioxa-18-azadecacyclo[25.4.2.0²,¹⁶.0⁵,¹⁵.0⁶,⁸.0⁶,¹².0¹⁷,³¹.0¹⁹,³⁰.0²²,²⁹.0²⁵,²⁸]tritriaconta-17(31),19,21,29-tetraen-23-one
(2e)-n-[(1e)-7-[(3-aminopropyl)amino]-1-(3,4-dihydroxyphenyl)-3-oxohept-1-en-4-yl]-3-(4-hydroxyphenyl)-n-[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]prop-2-enamide
C34H37N3O7 (599.2631372000001)