Exact Mass: 590.3104192000001
Exact Mass Matches: 590.3104192000001
Found 10 metabolites which its exact mass value is equals to given mass value 590.3104192000001
,
within given mass tolerance error 1.6E-6 dalton. Try search metabolite list with more accurate mass tolerance error
3.2E-7 dalton.
Urobilinogen
C33H42N4O6 (590.3104192000001)
Urobilinogen is a tetrapyrrole chemical compound that is that is the parent compound of both stercobilin (the pigment that is responsible for the brown color of feces) and urobilin (the pigment that is responsible for the yellow color of urine). Urobilinogen is formed through the microbial degradation of its parent compound bilirubin. Urobilinogen is actually generated through the degradation of heme, the red pigment in haemoglobin and red blood cells (RBCs). RBCs have a life span of about 120 days. When the RBCs have reached the end of their useful lifespan, the cells are engulfed by macrophages and their constituents recycled or disposed of. Heme is broken down when the heme ring is opened by the enzyme known as heme oxygenase, which is found in the endoplasmic reticulum of the macrophages. The oxidation process produces the linear tetrapyrrole known as biliverdin along with ferric iron (Fe3+), and carbon monoxide (CO). In the next reaction, a second methylene group (located between rings III and IV of the porphyrin ring) is reduced by the enzyme known as biliverdin reductase, producing bilirubin. Bilirubin is significantly less extensively conjugated than biliverdin. This reduction causes a change in the color of the biliverdin molecule from blue-green (vert or verd for green) to yellow-red, which is the color of bilirubin (ruby or rubi for red). In plasma virtually all the bilirubin is tightly bound to plasma proteins, largely albumin, because it is only sparingly soluble in aqueous solutions at physiological pH. In the sinusoids unconjugated bilirubin dissociates from albumin, enters the liver cells across the cell membrane through non-ionic diffusion to the smooth endoplasmatic reticulum. In hepatocytes, bilirubin-UDP-glucuronyltransferase (bilirubin-UGT) adds 2 additional glucuronic acid molecules to bilirubin to produce the more water-soluble version of the molecule known as bilirubin diglucuronide. The bilirubin diglucuronide is transferred rapidly across the canalicular membrane into the bile canaliculi where it is then excreted as bile into the large intestine. The bilirubin is further degraded (reduced) by microbes present in the large intestine to form a colorless product known as urobilinogen. Urobilinogen that remains in the colon can either be reduced to stercobilinogen and finally oxidized to stercobilin, or it can be directly reduced to stercobilin. Some of the urobilinogen produced by the gut bacteria is reabsorbed and re-enters the enterohepatic circulation. This reabsorbed urobilinogen is oxidized and converted to urobilin. The urobilin is processed through the kidneys and then excreted in the urine, which causes the yellowish color in urine. Urobilinogen (also known as D-urobilinogen) is closely related to two other compounds: mesobilirubinogen (also known as I-urobilinogen) and stercobilinogen (also known as. L-urobilinogen). Specifically, urobilinogen can be reduced to form mesobilirubinogen, and mesobilirubinogen can be further reduced to form stercobilinogen. Confusingly, all three of these compounds are frequently collectively referred to as "urobilinogens". Urobilinogen content can be determined by a reaction with Ehrlichs reagent, which contains para-dimethylaminobenzaldehyde. Ehrlichs reagent reacts with urobilinogen to give a pink-red color. Low urine urobilinogen may result from complete obstructive jaundice or treatment with broad-spectrum antibiotics, which destroy the intestinal bacterial flora. Low urine urobilinogen levels may also result from congenital enzymatic jaundice (hyperbilirubinemia syndromes) or from treatment with drugs that acidify urine, such as ammonium chloride or ascorbic acid. Elevated urine levels of urinobilinogen may indicate hemolytic anaemia, a large hematoma, restricted liver function, hepatic infection, poisoning or liver cirrhosis. Urobilinogen is a colourless product of bilirubin reduction. It is formed in the intestines by bacterial action. Some urobilinogen is reabsorbed, taken up by the hepatocytes into the circulation and excreted by the kidney. This constitutes the normal "intrahepatic urobilinogen cycle".
Urobilin
C33H42N4O6 (590.3104192000001)
Urobilin, also known as urochrome, is the tetrapyrrole chemical compound that is primarily responsible for the yellow color of urine. Urobilin is formed through the oxidation of its parent compound uroblinogen. Urobilin is actually generated through the degradation of heme, the red pigment in haemoglobin and red blood cells (RBCs). RBCs have a life span of about 120 days. When the RBCs have reached the end of their useful lifespan, the cells are engulfed by macrophages and their constituents recycled or disposed of. Heme is broken down when the heme ring is opened by the enzyme known as heme oxygenase, which is found in the endoplasmic reticulum of the macrophages. The oxidation process produces the linear tetrapyrrole known as biliverdin along with ferric iron (Fe3+), and carbon monoxide (CO). In the next reaction, a second methylene group (located between rings III and IV of the porphyrin ring) is reduced by the enzyme known as biliverdin reductase, producing bilirubin. Bilirubin is significantly less extensively conjugated than biliverdin. This reduction causes a change in the color of the biliverdin molecule from blue-green (vert or verd for green) to yellow-red, which is the color of bilirubin (ruby or rubi for red). In plasma virtually all the bilirubin is tightly bound to plasma proteins, largely albumin, because it is only sparingly soluble in aqueous solutions at physiological pH. In the sinusoids unconjugated bilirubin dissociates from albumin, enters the liver cells across the cell membrane through non-ionic diffusion to the smooth endoplasmatic reticulum. In hepatocytes, bilirubin-UDP-glucuronyltransferase (bilirubin-UGT) adds 2 additional glucuronic acid molecules to bilirubin to produce the more water-soluble version of the molecule known as bilirubin diglucuronide. The bilirubin diglucuronide is transferred rapidly across the canalicular membrane into the bile canaliculi where it is then excreted as bile into the large intestine. The bilirubin is further degraded (reduced) by microbes present in the large intestine to form a colorless product known as urobilinogen. Some of the urobilinogen produced by the gut bacteria is reabsorbed and re-enters the enterohepatic circulation. These urobilinogens are oxidized and converted to urobilin. The urobilin is processed through the kidneys and then excreted in the urine, which causes the yellowish color in urine. Many urine tests monitor the amount of urobilin in urine, as this provides some useful insight into urinary tract function. Normally, urine would appear as either light yellow or colorless. A lack of water intake, for example following sleep or dehydration, reduces the water content of urine, thereby concentrating urobilin and producing a darker color of urine. Obstructive jaundice reduces biliary bilirubin excretion, which is then excreted directly from the blood stream into the urine, giving a dark-colored urine. This dark colored urine has a paradoxically low urobilin concentration.
21H-Biline-8,12-dipropanoic acid, 3,18-diethyl-1,4,5,15,16,19,22,24-octahydro-2,7,13,17-tetramethyl-1,19-dioxo-
C33H42N4O6 (590.3104192000001)
I-urobilin
C33H42N4O6 (590.3104192000001)
Urobilin is one of the final by-products of hemoglobin breakdown. Urobilin is excreted in both the urine and feces from many mammals, particularly humans. The breakdown of hemoglobin to biliverdin is common to most animals, while the next step, the conversion of biliverdin to bilirubin, and subsequently to the urobilinogens (urobilin is one particular oxidized chemical form of urobilinogen) is unique to mammals. (PMID: 16604237) [HMDB]
(2S,3S,4S,5E)-4-(2-carboxyethyl)-5-[2-[[5-[(3-ethenyl-4-methyl-5-oxo-1,2-dihydropyrrol-2-yl)methyl]-3-ethyl-4-methyl-1H-pyrrol-2-yl]methyl]-3-methyl-4-oxo-3a,6a-dihydro-1H-cyclopenta[b]pyrrol-6-ylidene]-3-methylpyrrolidine-2-carboxylic acid
C33H42N4O6 (590.3104192000001)
3-[(2E)-2-[[3-(2-carboxyethyl)-5-[(3-ethyl-4-methyl-5-oxo-1,2-dihydropyrrol-2-yl)methyl]-4-methyl-1H-pyrrol-2-yl]methylene]-5-[(4-ethyl-3-methyl-5-oxo-1,2-dihydropyrrol-2-yl)methyl]-4-methyl-pyrrol-3-yl]propanoic acid
C33H42N4O6 (590.3104192000001)
BMS-193885
C33H42N4O6 (590.3104192000001)
BMS-193885 is a potent, selective, competitive, and brain penetrant neuropeptide Y1 receptor antagonist with a Ki of 3.3 nM, and has an IC50 of 5.9 nM for hY1, which displays > 100, > 160, > 160 and > 160-fold selectivity over α1, hY2, hY4 and hY5 receptors, respectively [1] [2].