Exact Mass: 578.3822
Exact Mass Matches: 578.3822
Found 339 metabolites which its exact mass value is equals to given mass value 578.3822
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Asparagoside A
Melongoside A is found in fruits. Melongoside A is a constituent of aubergine (Solanum melongena).
Anhydroamarouciaxanthin B
Anhydroamarouciaxanthin B is found in blue mussel. Anhydroamarouciaxanthin B is a constituent of Mytilus edulis (blue mussel). Constituent of Mytilus edulis (blue mussel). Anhydroamarouciaxanthin B is found in blue mussel and mollusks.
PA(10:0/17:0)
PA(10:0/17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/17:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of margaric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(8:0/19:0)
PA(8:0/19:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/19:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of nonadecylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(10:0/a-17:0)
PA(10:0/a-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/a-17:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(10:0/i-17:0)
PA(10:0/i-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(10:0/i-17:0), in particular, consists of one chain of capric acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(8:0/i-19:0)
PA(8:0/i-19:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/i-19:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of isononadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-13:0/i-14:0)
PA(a-13:0/i-14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/i-14:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isotetradecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-12:0/a-15:0)
PA(i-12:0/a-15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/a-15:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of anteisopentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-12:0/i-15:0)
PA(i-12:0/i-15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/i-15:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isopentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-13:0/i-14:0)
PA(i-13:0/i-14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/i-14:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isotetradecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-14:0/a-13:0)
PA(i-14:0/a-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-14:0/a-13:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-14:0/i-13:0)
PA(i-14:0/i-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-14:0/i-13:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
Chenodeoxycholyltryptophan
Chenodeoxycholyltryptophan belongs to a class of molecules known as bile acid-amino acid conjugates. These are bile acid conjugates that consist of a primary bile acid such as cholic acid, doxycholic acid and chenodeoxycholic acid, conjugated to an amino acid. Chenodeoxycholyltryptophan consists of the bile acid chenodeoxycholic acid conjugated to the amino acid Tryptophan conjugated at the C24 acyl site.Bile acids play an important role in regulating various physiological systems, such as fat digestion, cholesterol metabolism, vitamin absorption, liver function, and enterohepatic circulation through their combined signaling, detergent, and antimicrobial mechanisms (PMID: 34127070). Bile acids also act as detergents in the gut and support the absorption of fats through the intestinal membrane. These same properties allow for the disruption of bacterial membranes, thereby allowing them to serve a bacteriocidal or bacteriostatic function. In humans (and other mammals) bile acids are normally conjugated with the amino acids glycine and taurine by the liver. This conjugation catalyzed by two liver enzymes, bile acid CoA ligase (BAL) and bile acid CoA: amino acid N-acyltransferase (BAT). Glycine and taurine bound BAs are also referred to as bile salts due to their decreased pKa and complete ionization resulting in these compounds being present as anions in vivo. Unlike glycine and taurine-conjugated bile acids, these recently discovered bile acids, such as Chenodeoxycholyltryptophan, are produced by the gut microbiota, making them secondary bile acids (PMID: 32103176) or microbially conjugated bile acids (MCBAs) (PMID: 34127070). Evidence suggests that these bile acid-amino acid conjugates are produced by microbes belonging to Clostridia species (PMID: 32103176). These unusual bile acid-amino acid conjugates are found in higher frequency in patients with inflammatory bowel disease (IBD), cystic fibrosis (CF) and in infants (PMID: 32103176). Chenodeoxycholyltryptophan appears to act as an agonist for the farnesoid X receptor (FXR) and it can also lead to reduced expression of bile acid synthesis genes (PMID: 32103176). It currently appears that microbially conjugated bile acids (MCBAs) or amino acid-bile acid conjugates are only conjugated to cholic acid, deoxycholic acid and chenodeoxycholic acid (PMID: 34127070). It has been estimated that if microbial conjugation of bile acids is very promiscuous and occurs for all potential oxidized, epimerized, and dehydroxylated states of each hydroxyl group present on cholic acid (C3, C7, C12) in addition to ring orientation, the total number of potential human bile acid conjugates could be over 2800 (PMID: 34127070).
Deoxycholyltryptophan
Deoxycholyltryptophan belongs to a class of molecules known as bile acid-amino acid conjugates. These are bile acid conjugates that consist of a primary bile acid such as cholic acid, doxycholic acid and chenodeoxycholic acid, conjugated to an amino acid. Deoxycholyltryptophan consists of the bile acid deoxycholic acid conjugated to the amino acid Tryptophan conjugated at the C24 acyl site.Bile acids play an important role in regulating various physiological systems, such as fat digestion, cholesterol metabolism, vitamin absorption, liver function, and enterohepatic circulation through their combined signaling, detergent, and antimicrobial mechanisms (PMID: 34127070). Bile acids also act as detergents in the gut and support the absorption of fats through the intestinal membrane. These same properties allow for the disruption of bacterial membranes, thereby allowing them to serve a bacteriocidal or bacteriostatic function. In humans (and other mammals) bile acids are normally conjugated with the amino acids glycine and taurine by the liver. This conjugation catalyzed by two liver enzymes, bile acid CoA ligase (BAL) and bile acid CoA: amino acid N-acyltransferase (BAT). Glycine and taurine bound BAs are also referred to as bile salts due to their decreased pKa and complete ionization resulting in these compounds being present as anions in vivo. Unlike glycine and taurine-conjugated bile acids, these recently discovered bile acids, such as Deoxycholyltryptophan, are produced by the gut microbiota, making them secondary bile acids (PMID: 32103176) or microbially conjugated bile acids (MCBAs) (PMID: 34127070). Evidence suggests that these bile acid-amino acid conjugates are produced by microbes belonging to Clostridia species (PMID: 32103176). These unusual bile acid-amino acid conjugates are found in higher frequency in patients with inflammatory bowel disease (IBD), cystic fibrosis (CF) and in infants (PMID: 32103176). Deoxycholyltryptophan appears to act as an agonist for the farnesoid X receptor (FXR) and it can also lead to reduced expression of bile acid synthesis genes (PMID: 32103176). It currently appears that microbially conjugated bile acids (MCBAs) or amino acid-bile acid conjugates are only conjugated to cholic acid, deoxycholic acid and chenodeoxycholic acid (PMID: 34127070). It has been estimated that if microbial conjugation of bile acids is very promiscuous and occurs for all potential oxidized, epimerized, and dehydroxylated states of each hydroxyl group present on cholic acid (C3, C7, C12) in addition to ring orientation, the total number of potential human bile acid conjugates could be over 2800 (PMID: 34127070).
DG(10:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(10:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(10:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/10:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/10:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/10:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(10:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(10:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/10:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/10:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
Timosaponin A1
Timosaponin A1 is a natural product found in Anemarrhena asphodeloides with data available. Timosaponin A1 is a coprostane type steroidal saponin isolated from Rhizoma Anemarrhenae. Timosaponin A1 is a coprostane type steroidal saponin isolated from Rhizoma Anemarrhenae.
Oleoyl neocryptotanshinone
A diterpenoid with a fatty acyl side chain isolated from Salvia miltiorrhiza and has been shown to inhibit platelet aggregation induced by arachidonic acid.
7-hydroxy-23,24-dihydrocucurbitacin F 25-O-acetate|Hemslecin G
(22S)-cholesta-5,24-diene-3beta,11alpha,16beta,22-tetrol 16-O-alpha-L-rhamnopyranoside|(22S)-Cholesta-5,24-diene-3??,11??,16??,22-tetrol 16-O-??-L-rhamnopyranoside
6alpha-O-beta-D-quinovopyranosyl-(25R)-5alpha-spirostan-3beta-ol|6alpha-O-beta-quinovopyranosyl-(25R)-5alpha-spirostan-3beta-ol|saponin Sc-4|SC-4
cholestane-1beta,3beta,5alpha,6beta-tetraol 1,3,6-triacetate
3beta,21alpha,24-trihydroxyserrat-14-en-3-(4-hydroxybenzoate)
3-O-benzoylpluricostatic acid|3beta-benzoyloxy-2alpha-hydroxy-D:A-friedoolean-28-oic acid
(25S)-3beta-hydroxy-5alpha-spirostan-6alpha-yl-O-beta-D-xylopyranoside
3beta,21beta,24-trihydroxyserrat-14-en-24-(4-hydroxybenzoate)
8alpha,9alpha-Epoxide,10beta-hydroxy,25-Me ether-Antibiotic FD 892|FD-891
3-O-alpha-L-Fucopyranoside-Ergost-5-ene-3,16,25-triol
C32H50O9_beta-D-Xylopyranoside, 3,17-dihydroxyspirost-5-en-1-yl
putative tryptophane conjugated chenodeoxycholic acid
putative tryptophane conjugated chenodeoxycholic acid (clustered spectrum)
Ile Lys Arg Tyr
Ile Lys Tyr Arg
Ile Arg Lys Tyr
Ile Arg Tyr Lys
Ile Tyr Lys Arg
Ile Tyr Arg Lys
Lys Ile Arg Tyr
Lys Ile Tyr Arg
Lys Leu Arg Tyr
Lys Leu Tyr Arg
Lys Arg Ile Tyr
Lys Arg Leu Tyr
Lys Arg Tyr Ile
Lys Arg Tyr Leu
Lys Tyr Ile Arg
Lys Tyr Leu Arg
Lys Tyr Arg Ile
Lys Tyr Arg Leu
Leu Lys Arg Tyr
Leu Lys Tyr Arg
Leu Arg Lys Tyr
Leu Arg Tyr Lys
Leu Tyr Lys Arg
Leu Tyr Arg Lys
Arg Ile Lys Tyr
Arg Ile Tyr Lys
Arg Lys Ile Tyr
Arg Lys Leu Tyr
Arg Lys Tyr Ile
Arg Lys Tyr Leu
Arg Leu Lys Tyr
Arg Leu Tyr Lys
Arg Tyr Ile Lys
Arg Tyr Lys Ile
Arg Tyr Lys Leu
Arg Tyr Leu Lys
Tyr Ile Lys Arg
Tyr Ile Arg Lys
Tyr Lys Ile Arg
Tyr Lys Leu Arg
Tyr Lys Arg Ile
Tyr Lys Arg Leu
Tyr Leu Lys Arg
Tyr Leu Arg Lys
Tyr Arg Ile Lys
Tyr Arg Lys Ile
Tyr Arg Lys Leu
Tyr Arg Leu Lys
1,25-Dihydroxyvitamin D3 3-glycoside
Pandaroside D
Asparagoside A
Isolated from rhizomes of Mexican sarsaparilla (Smilax aristolochiaefolia) and from asparagus (Asparagus officinalis) root. Asparagoside A is found in asparagus, herbs and spices, and green vegetables.
Anhydroamarouciaxanthin B
Cyathsterone A
Cyathsterone B
(25S)-5beta-spirostan-3beta-yl beta-D-glucoside
3beta,15alpha,16alpha,24alpha-tetrahydroxy25,26,27-trinor-16,24-cyclo-cycloartane-23-one-3-O-beta-D-xylopyranoside
1,1-DIBUTYL-3,3,3,3-TETRAMETHYL-INDADICARBOCYANINE PERCHLORATE
Melongoside A
Constituent of aubergine (Solanum melongena). Melongoside A is found in fruits and eggplant.
2-[[(2R)-3-[(Z)-docos-13-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-acetyloxy-2-[8-[3-[(Z)-oct-2-enyl]oxiran-2-yl]octanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-acetyloxy-3-[8-[3-[(Z)-oct-2-enyl]oxiran-2-yl]octanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-acetyloxy-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-acetyloxy-3-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
buxalongifolamidine
A natural product found in Buxus natalensis and Buxus longifolia.
[(1R,5R)-8-methyl-8-azabicyclo[3.2.1]octan-3-yl] 3-hydroxy-2-phenylpropanoate
WURCS=2.0/1,1,0/[hx12xh_3-6_1*OCCOCCCCCCCCCCCCCCCC/6=O_2*OCCO_4*OCCO_5*OCCO]/1
2-[[(2R)-3-[(Z)-docos-11-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-[(Z)-hexadec-1-enoxy]-2-(5-oxopentanoyloxy)propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2,3-dihydroxypropyl [2-hydroxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propyl] hydrogen phosphate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
(1-Heptanoyloxy-3-phosphonooxypropan-2-yl) icosanoate
(1-Pentanoyloxy-3-phosphonooxypropan-2-yl) docosanoate
(1-Butanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate
(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) octadecanoate
(1-Acetyloxy-3-phosphonooxypropan-2-yl) pentacosanoate
(1-Phosphonooxy-3-propanoyloxypropan-2-yl) tetracosanoate
(1-Hexanoyloxy-3-phosphonooxypropan-2-yl) henicosanoate
(1-Octanoyloxy-3-phosphonooxypropan-2-yl) nonadecanoate
(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) pentadecanoate
(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) tetradecanoate
(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) hexadecanoate
(1-Decanoyloxy-3-phosphonooxypropan-2-yl) heptadecanoate
[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] hexadecanoate
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate
2-[[(2R)-3-[(E)-docos-13-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-2-decanoyloxy-3-phosphonooxypropyl] heptadecanoate
[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] hexadecanoate
2-[[3-butanoyloxy-2-[(Z)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-hexanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-heptanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[2-octanoyloxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-hexadec-9-enoxy]-2-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-acetyloxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentanoyloxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[3-octanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-butanoyloxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-docos-13-enoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-propanoyloxypropoxy]propyl]-trimethylazanium
2-[[3-heptanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-octoxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-heptadec-9-enoxy]-2-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-nonanoyloxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-acetyloxy-3-[(Z)-icos-11-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-heptanoyloxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-nonoxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
(17z,19z,21z,23z,25z)-4,6,10,12,14,16-hexahydroxy-28-isopropyl-3,15,27-trimethyl-1-oxacyclooctacosa-17,19,21,23,25-pentaen-2-one
(1r,3ar,5r,5ar,5br,7ar,9s,11as,11br,12r,13ar,13bs)-5,9-dihydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-12-yl 4-hydroxybenzoate
(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]oxane-3,4,5-triol
(2s,3r,4s,5r)-2-{[(1s,4r,5r,6r,8r,10s,12s,13s,15s,16r,18s,21r)-8-ethoxy-15-hydroxy-4,6,12,17,17-pentamethyl-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-18-yl]oxy}oxane-3,4,5-triol
4,6,10,12,14,16-hexahydroxy-28-isopropyl-3,15,27-trimethyl-1-oxacyclooctacosa-17,19,21,23,25-pentaen-2-one
(4ar,5s,6r,8ar)-5-{2-[1-(4-{[(2e)-1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-ylidene]amino}butyl)-5-oxo-2h-pyrrol-3-yl]ethyl}-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid
(3s,4r,6r,10s,12s,14s,15s,16s,17e,19e,21e,23e,25e,27r,28s)-4,6,10,12,14,16-hexahydroxy-28-isopropyl-3,15,27-trimethyl-1-oxacyclooctacosa-17,19,21,23,25-pentaen-2-one
(1s,2s,3s,4r,5r,6r)-2,3,4,5-tetrahydroxy-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}cyclohexyl (9s)-9-methylheptadecanoate
(2s)-2-(3-hydroxy-8,8-dimethyl-1,4-dioxo-6,7-dihydro-5h-phenanthren-2-yl)propyl (9z)-octadec-9-enoate
methyl (1r,2r,4ar,4br,5s,6as,9r,10r,10as,10br,12ar)-5,10-dihydroxy-2-(1-methoxy-2-methyl-1-oxopropan-2-yl)-1-(2-methoxy-2-oxoethyl)-1,4a,4b,9,10-pentamethyl-dodecahydro-2h-chrysene-6a-carboxylate
(1ar,2r,3s,3as,5r,6r,7ar,7bs)-2-[(2e)-but-2-en-2-yl]-6-hydroxy-1a,6-dimethyl-3-[(1e,3e)-4-[(4s,5s)-2,2,5-trimethyl-1,3-dioxan-4-yl]penta-1,3-dien-1-yl]-octahydronaphtho[1,2-b]oxiren-5-yl 2-phenylacetate
(25S)-5β-sprostane-3β-ol-3-O-β-D-glucopyranoside
{"Ingredient_id": "HBIN004790","Ingredient_name": "(25S)-5\u03b2-sprostane-3\u03b2-ol-3-O-\u03b2-D-glucopyranoside","Alias": "NA","Ingredient_formula": "C33H54O8","Ingredient_Smile": "CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CCC6C5(CCC(C6)OC7C(C(C(C(O7)CO)O)O)O)C)C)C)OC1","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "38986","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}