Exact Mass: 560.4526

Exact Mass Matches: 560.4526

Found 278 metabolites which its exact mass value is equals to given mass value 560.4526, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone

3-[(2E,6E,10E,14E,18E)-3,7,11,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaen-1-yl]-5-methoxy-2-methylcyclohexa-2,5-diene-1,4-dione

C38H56O3 (560.4229)


2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is involved in the ubiquinone biosynthesis pathway. 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is created from 2-Hexaprenyl-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis methyltransferase [EC:2.1.1.-]. 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is then converted to 2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-]. [HMDB] 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is involved in the ubiquinone biosynthesis pathway. 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is created from 2-Hexaprenyl-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis methyltransferase [EC:2.1.1.-]. 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone is then converted to 2-Hexaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone by ubiquinone biosynthesis monooxygenase Coq7 [EC:1.14.13.-].

   

Phytoene 1,2-epoxide

3-[(3Z,7E,11E,13E,15E,19Z,23Z)-3,7,11,16,20,24,28-heptamethylnonacosa-3,7,11,13,15,19,23,27-octaen-1-yl]-2,2-dimethyloxirane

C40H64O (560.4957)


Isolated from ripe tomatoes. Phytoene 1,2-epoxide is found in garden tomato and garden tomato (variety). Phytoene 1,2-epoxide is found in garden tomato. Phytoene 1,2-epoxide is isolated from ripe tomatoes.

   

Corepoxylone

3-(12-{3-[2-(3-dodecyloxiran-2-yl)ethyl]oxiran-2-yl}-8-oxododecyl)-5-methyl-2,5-dihydrofuran-2-one

C35H60O5 (560.4441)


Corepoxylone is found in fruits. Corepoxylone is a constituent of Annona muricata (soursop). Constituent of Annona muricata (soursop). Corepoxylone is found in fruits.

   

DG(14:0/18:4(6Z,9Z,12Z,15Z)/0:0)

(2S)-1-hydroxy-3-(tetradecanoyloxy)propan-2-yl (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C35H60O5 (560.4441)


DG(14:0/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:0/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of myristic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(14:1(9Z)/18:3(6Z,9Z,12Z)/0:0)

(2S)-1-hydroxy-3-[(9Z)-tetradec-9-enoyloxy]propan-2-yl (6Z,9Z,12Z)-octadeca-6,9,12-trienoate

C35H60O5 (560.4441)


DG(14:1(9Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(14:1(9Z)/18:3(6Z,9Z,12Z)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(14:1(9Z)/18:3(6Z,9Z,12Z)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(14:1(9Z)/18:3(9Z,12Z,15Z)/0:0)

(2S)-1-hydroxy-3-[(9Z)-tetradec-9-enoyloxy]propan-2-yl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C35H60O5 (560.4441)


DG(14:1(9Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:3(6Z,9Z,12Z)/14:1(9Z)/0:0)

(2S)-3-hydroxy-2-[(9Z)-tetradec-9-enoyloxy]propyl (6Z,9Z,12Z)-octadeca-6,9,12-trienoate

C35H60O5 (560.4441)


DG(18:3(6Z,9Z,12Z)/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/14:1(9Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:3(9Z,12Z,15Z)/14:1(9Z)/0:0)

(2S)-3-hydroxy-2-[(9Z)-tetradec-9-enoyloxy]propyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C35H60O5 (560.4441)


DG(18:3(9Z,12Z,15Z)/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/14:1(9Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(9Z,12Z,15Z)/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/14:1(9Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:4(6Z,9Z,12Z,15Z)/14:0/0:0)

(2S)-3-hydroxy-2-(tetradecanoyloxy)propyl (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C35H60O5 (560.4441)


DG(18:4(6Z,9Z,12Z,15Z)/14:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/14:0/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of myristic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the myristic acid moiety is derived from nutmeg and butter. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:4(6Z,9Z,12Z,15Z)/14:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/14:0/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of myristic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the myristic acid moiety is derived from nutmeg and butter. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

1,2-Epoxy-1,2,7,7',8,8',11',12'-octahydro-psi,psi-carotene

3-[(3E,7E,11Z,13E,15Z,17Z,19E,23E)-3,7,11,16,20,24,28-heptamethylnonacosa-3,7,11,13,15,17,19,23-octaen-1-yl]-2,2-dimethyloxirane

C40H64O (560.4957)


1,2-Epoxy-1,2,7,7,8,8,11,12-octahydro-psi,psi-carotene is found in garden tomato. 1,2-Epoxy-1,2,7,7,8,8,11,12-octahydro-psi,psi-carotene is isolated from tomatoes (Lycopersicon esculentum Isolated from tomatoes (Lycopersicon esculentum). 1,2-Epoxy-1,2,7,7,8,8,11,12-octahydro-psi,psi-carotene is found in garden tomato.

   

DG(14:0/0:0/18:4n3)

(2R)-2-Hydroxy-3-(tetradecanoyloxy)propyl (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoic acid

C35H60O5 (560.4441)


DG(14:0/0:0/18:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(14:0/0:0/18:4n3), in particular, consists of one chain of myristic acid at the C-1 position and one chain of stearidonic acid at the C-3 position. The myristic acid moiety is derived from nutmeg and butter, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(14:1n5/0:0/18:3n6)

(2S)-2-Hydroxy-3-[(5Z)-tetradec-5-enoyloxy]propyl (6Z,9Z,12Z)-octadeca-6,9,12-trienoic acid

C35H60O5 (560.4441)


DG(14:1n5/0:0/18:3n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(14:1n5/0:0/18:3n6), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of g-linolenic acid at the C-3 position. The myristoleic acid moiety is derived from milk fats, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(14:1n5/0:0/18:3n3)

(2S)-2-Hydroxy-3-[(5Z)-tetradec-5-enoyloxy]propyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid

C35H60O5 (560.4441)


DG(14:1n5/0:0/18:3n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(14:1n5/0:0/18:3n3), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of a-linolenic acid at the C-3 position. The myristoleic acid moiety is derived from milk fats, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

2-Hexadec-7-enylicosa-8,11-dienedioic acid

2-(hexadec-7-en-1-yl)icosa-8,11-dienedioic acid

C36H64O4 (560.4804)


   

3-O-beta-D-glucosyl-brassicasterol

2-{[14-(5,6-dimethylhept-3-en-2-yl)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C34H56O6 (560.4077)


3-o-beta-d-glucosyl-brassicasterol is a member of the class of compounds known as steroidal glycosides. Steroidal glycosides are sterol lipids containing a carbohydrate moiety glycosidically linked to the steroid skeleton. 3-o-beta-d-glucosyl-brassicasterol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3-o-beta-d-glucosyl-brassicasterol can be found in a number of food items such as salmonberry, abalone, roman camomile, and canola, which makes 3-o-beta-d-glucosyl-brassicasterol a potential biomarker for the consumption of these food products.

   

22E,24R-ergosta-7,22-dien-3-O-beta-glucopyranoside|ergosta-7,22-dien-3-O-beta-D-glucopyranoside

22E,24R-ergosta-7,22-dien-3-O-beta-glucopyranoside|ergosta-7,22-dien-3-O-beta-D-glucopyranoside

C34H56O6 (560.4077)


   

24-methylenecholest-5-en-3beta,16beta-diol-3-O-alpha-L-fucopyranoside|24-methylenecholest-5-en-3beta,16beta-diol-3-O-alpha-L-fucoside|24-methylenecholest-5-ene-3beta,16beta-diol-3-O-alpha-L-fucopyranoside

24-methylenecholest-5-en-3beta,16beta-diol-3-O-alpha-L-fucopyranoside|24-methylenecholest-5-en-3beta,16beta-diol-3-O-alpha-L-fucoside|24-methylenecholest-5-ene-3beta,16beta-diol-3-O-alpha-L-fucopyranoside

C34H56O6 (560.4077)


   

(3beta,32R,33R,34S)-3-Methyl-29-(2,3,4,5-tetrahydroxypentyl)hopane

(3beta,32R,33R,34S)-3-Methyl-29-(2,3,4,5-tetrahydroxypentyl)hopane

C36H64O4 (560.4804)


   

O-alpha-D-Riburonofuranoside-Stigmast-5-en-3-ol|O-alpha-D-Xyluronofuranoside-Stigmast-5-en-3-ol|O-beta-D-Xyluronofuranoside-Stigmast-5-en-3-ol

O-alpha-D-Riburonofuranoside-Stigmast-5-en-3-ol|O-alpha-D-Xyluronofuranoside-Stigmast-5-en-3-ol|O-beta-D-Xyluronofuranoside-Stigmast-5-en-3-ol

C34H56O6 (560.4077)


   

3beta-O-beta-D-glucopyranosyl-24-methylenecholesterol

3beta-O-beta-D-glucopyranosyl-24-methylenecholesterol

C34H56O6 (560.4077)


   

(all-E)-2,6,10,14,19,23,27,31-octamethyl-dotriaconta-6,10,12,14,16,18,22,26,30-nonaen-2-ol|1,2,7,8,7,8,11,12-octahydro-psi,psi-caroten-1-ol|1,2,7,8,7,8,11,12-Oktahydro-4,4-caroten-1-ol|1,2,7,8,7,8,11,12-Oktahydro-psi,psi-caroten-1-ol|Hydroxyphytofluene

(all-E)-2,6,10,14,19,23,27,31-octamethyl-dotriaconta-6,10,12,14,16,18,22,26,30-nonaen-2-ol|1,2,7,8,7,8,11,12-octahydro-psi,psi-caroten-1-ol|1,2,7,8,7,8,11,12-Oktahydro-4,4-caroten-1-ol|1,2,7,8,7,8,11,12-Oktahydro-psi,psi-caroten-1-ol|Hydroxyphytofluene

C40H64O (560.4957)


   

(32R,33R,34S)-12alpha-methyl-32,33,34,35-bacteriohopanetetrol|12-methylbacteriohopanetetrol

(32R,33R,34S)-12alpha-methyl-32,33,34,35-bacteriohopanetetrol|12-methylbacteriohopanetetrol

C36H64O4 (560.4804)


   

3-O-methylmalonylepiocotillol II|3-O-methylmalonylepiocotillol-II

3-O-methylmalonylepiocotillol II|3-O-methylmalonylepiocotillol-II

C34H56O6 (560.4077)


   

24-O-butyl-2alpha,3beta,19alpha,24-tetrahydroxyurs-12-ene-28-oic acid

24-O-butyl-2alpha,3beta,19alpha,24-tetrahydroxyurs-12-ene-28-oic acid

C34H56O6 (560.4077)


   

Diacetylpyxinol

Diacetylpyxinol

C34H56O6 (560.4077)


   

22-dihydroergosteryl-3-O-beta-D-glucopyranoside

22-dihydroergosteryl-3-O-beta-D-glucopyranoside

C34H56O6 (560.4077)


   

3alpha,12beta-diacetoxy-20(S),24(R)-epoxy-25-hydroxydammarane|3alpha,12beta-diacetoxy-25-hydroxy-20S,24R-epoxydammarane|3alpha-,12beta-diacetoxy-20(S),24(R)-epoxydammaran-25-ol

3alpha,12beta-diacetoxy-20(S),24(R)-epoxy-25-hydroxydammarane|3alpha,12beta-diacetoxy-25-hydroxy-20S,24R-epoxydammarane|3alpha-,12beta-diacetoxy-20(S),24(R)-epoxydammaran-25-ol

C34H56O6 (560.4077)


   

Tomatidine-O-rhamnoside

Tomatidine-O-rhamnoside

C34H56O6 (560.4077)


   
   

Mayolene-18

11R-octadecanoyloxyoctadeca-9Z,12Z,15Z-trienoic acid

C36H64O4 (560.4804)


   

2-methylbacteriohopane-32,33,34,35-tetrol

2-methylbacteriohopane-32,33,34,35-tetrol

C36H64O4 (560.4804)


   

Diglyceride

1-alpha-linolenoyl-2-myristoleoyl-sn-glycerol

C35H60O5 (560.4441)


   

1,2-Epoxy-1,2,7,7',8,8',11',12'-octahydro-y,y-carotene

3-[(3E,7E,11Z,13E,15Z,17Z,19E,23E)-3,7,11,16,20,24,28-heptamethylnonacosa-3,7,11,13,15,17,19,23-octaen-1-yl]-2,2-dimethyloxirane

C40H64O (560.4957)


   

Phytoene 1,2-epoxide

3-[(3Z,7E,11E,13E,15E,19Z,23Z)-3,7,11,16,20,24,28-heptamethylnonacosa-3,7,11,13,15,19,23,27-octaen-1-yl]-2,2-dimethyloxirane

C40H64O (560.4957)


   

Corepoxylone

3-(12-{3-[2-(3-dodecyloxiran-2-yl)ethyl]oxiran-2-yl}-8-oxododecyl)-5-methyl-2,5-dihydrofuran-2-one

C35H60O5 (560.4441)


   

DG(12:0/20:4(5Z,8Z,11Z,14Z)/0:0)[iso2]

1-dodecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycerol

C35H60O5 (560.4441)


   

DG 32:4

1-(9Z-tetradecenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycerol

C35H60O5 (560.4441)


   

1-Hydroxy-1,2-dihydrophytofluene

1,2,7,8,7,8,11,12-Octahydro-psi,psi-caroten-1-ol

C40H64O (560.4957)


   

Phytoene epoxide

1,2-Epoxy-1,2,7,8,11,12,7,8,11,12-decahydro-psi,psi-carotene

C40H64O (560.4957)


   

2-Hydroxy-monocyclophytoene

7,8,11,12,7,8,11,12-Octahydro-beta,psi-caroten-2-ol

C40H64O (560.4957)


   
   

2,2-di(4,4-di(tert-butylperoxy)cyclohexyl)propane

2,2-di(4,4-di(tert-butylperoxy)cyclohexyl)propane

C31H60O8 (560.4288)


   

DILINOLEIC ACID

DILINOLEIC ACID

C36H64O4 (560.4804)


   

3-O-beta-D-glucosyl-brassicasterol

3-O-beta-D-glucosyl-brassicasterol

C34H56O6 (560.4077)


   

3-O-beta-D-glucosyl-brassicasterol

2-{[14-(5,6-dimethylhept-3-en-2-yl)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C34H56O6 (560.4077)


3-o-beta-d-glucosyl-brassicasterol is a member of the class of compounds known as steroidal glycosides. Steroidal glycosides are sterol lipids containing a carbohydrate moiety glycosidically linked to the steroid skeleton. 3-o-beta-d-glucosyl-brassicasterol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3-o-beta-d-glucosyl-brassicasterol can be found in a number of food items such as salmonberry, abalone, roman camomile, and canola, which makes 3-o-beta-d-glucosyl-brassicasterol a potential biomarker for the consumption of these food products. 3-o-β-d-glucosyl-brassicasterol is a member of the class of compounds known as steroidal glycosides. Steroidal glycosides are sterol lipids containing a carbohydrate moiety glycosidically linked to the steroid skeleton. 3-o-β-d-glucosyl-brassicasterol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3-o-β-d-glucosyl-brassicasterol can be found in a number of food items such as salmonberry, abalone, roman camomile, and canola, which makes 3-o-β-d-glucosyl-brassicasterol a potential biomarker for the consumption of these food products.

   

1,2-Epoxy phytoene

1,2-Epoxy phytoene

C40H64O (560.4957)


   

4-Amino-5-hydroxy-3-all-trans-hexaprenylbenzoate

4-Amino-5-hydroxy-3-all-trans-hexaprenylbenzoate

C37H54NO3- (560.4103)


   

(4S,9R,11R)-9,11-dihydroxy-29-(4-hydroxyphenyl)-4-methylnonacosan-3-one

(4S,9R,11R)-9,11-dihydroxy-29-(4-hydroxyphenyl)-4-methylnonacosan-3-one

C36H64O4 (560.4804)


   

ST 28:2;O;Hex

ST 28:2;O;Hex

C34H56O6 (560.4077)


   

2-Hexadec-7-enylicosa-8,11-dienedioic acid

2-Hexadec-7-enylicosa-8,11-dienedioic acid

C36H64O4 (560.4804)


   

24-methylenecholesteryl beta-D-glucoside

24-methylenecholesteryl beta-D-glucoside

C34H56O6 (560.4077)


A sterol 3-beta-D-glucoside having 24-methylenecholesterol as the sterol component.

   

2-Methylbacteriohopanetetrol

2-Methylbacteriohopanetetrol

C36H64O4 (560.4804)


   

(2S)-2,6-bis[[(3R)-3-isocyanododecanoyl]amino]hexanoic acid

(2S)-2,6-bis[[(3R)-3-isocyanododecanoyl]amino]hexanoic acid

C32H56N4O4 (560.4301)


   

NAOrn 16:4/12:0

NAOrn 16:4/12:0

C33H56N2O5 (560.4189)


   

NAOrn 18:4/10:0

NAOrn 18:4/10:0

C33H56N2O5 (560.4189)


   

[1-hydroxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] pentanoate

[1-hydroxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] pentanoate

C36H64O4 (560.4804)


   

(1-hydroxy-3-nonoxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

(1-hydroxy-3-nonoxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C36H64O4 (560.4804)


   

[1-hydroxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] nonanoate

[1-hydroxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] nonanoate

C36H64O4 (560.4804)


   

[1-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-3-hydroxypropan-2-yl] heptanoate

[1-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-3-hydroxypropan-2-yl] heptanoate

C36H64O4 (560.4804)


   

[1-[(Z)-heptadec-9-enoxy]-3-hydroxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[(Z)-heptadec-9-enoxy]-3-hydroxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C36H64O4 (560.4804)


   

(1-hydroxy-3-tridecoxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

(1-hydroxy-3-tridecoxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C36H64O4 (560.4804)


   

(1-hydroxy-3-undecoxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

(1-hydroxy-3-undecoxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C36H64O4 (560.4804)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-hydroxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-hydroxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C36H64O4 (560.4804)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate

C36H64O4 (560.4804)


   

(1-hydroxy-3-pentadecoxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

(1-hydroxy-3-pentadecoxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C36H64O4 (560.4804)


   

[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-hydroxypropan-2-yl] undecanoate

[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-hydroxypropan-2-yl] undecanoate

C36H64O4 (560.4804)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-hydroxypropan-2-yl] heptadecanoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-hydroxypropan-2-yl] heptadecanoate

C36H64O4 (560.4804)


   

(1-heptadecoxy-3-hydroxypropan-2-yl) (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

(1-heptadecoxy-3-hydroxypropan-2-yl) (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C36H64O4 (560.4804)


   

[1-hydroxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-hydroxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C36H64O4 (560.4804)


   

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] tridecanoate

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] tridecanoate

C36H64O4 (560.4804)


   

[1-hydroxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-hydroxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C36H64O4 (560.4804)


   

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (Z)-pentadec-9-enoate

C36H64O4 (560.4804)


   

[1-hydroxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-hydroxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (Z)-tridec-9-enoate

C36H64O4 (560.4804)


   

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] pentadecanoate

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] pentadecanoate

C36H64O4 (560.4804)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-hydroxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoxy]-3-hydroxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C36H64O4 (560.4804)


   

4-(12-hydroxy-10,13-dimethyl-3-undecanoyloxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid

4-(12-hydroxy-10,13-dimethyl-3-undecanoyloxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid

C35H60O5 (560.4441)


   

(2-octanoyloxy-3-octoxypropyl) (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

(2-octanoyloxy-3-octoxypropyl) (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C35H60O5 (560.4441)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-octanoyloxypropyl] octanoate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-octanoyloxypropyl] octanoate

C35H60O5 (560.4441)


   
   

Fahfa 20:3/16:0

Fahfa 20:3/16:0

C36H64O4 (560.4804)


   

Fahfa 17:1/19:2

Fahfa 17:1/19:2

C36H64O4 (560.4804)


   

Fahfa 18:1/18:2

Fahfa 18:1/18:2

C36H64O4 (560.4804)


   

Fahfa 20:1/16:2

Fahfa 20:1/16:2

C36H64O4 (560.4804)


   

Fahfa 21:2/15:1

Fahfa 21:2/15:1

C36H64O4 (560.4804)


   

Fahfa 14:1/22:2

Fahfa 14:1/22:2

C36H64O4 (560.4804)


   

Fahfa 20:2/16:1

Fahfa 20:2/16:1

C36H64O4 (560.4804)


   

Fahfa 14:0/22:3

Fahfa 14:0/22:3

C36H64O4 (560.4804)


   

Fahfa 15:1/21:2

Fahfa 15:1/21:2

C36H64O4 (560.4804)


   

Fahfa 16:0/20:3

Fahfa 16:0/20:3

C36H64O4 (560.4804)


   

Fahfa 16:1/20:2

Fahfa 16:1/20:2

C36H64O4 (560.4804)


   

Fahfa 19:1/17:2

Fahfa 19:1/17:2

C36H64O4 (560.4804)


   

Fahfa 19:2/17:1

Fahfa 19:2/17:1

C36H64O4 (560.4804)


   

Fahfa 17:2/19:1

Fahfa 17:2/19:1

C36H64O4 (560.4804)


   

Fahfa 16:2/20:1

Fahfa 16:2/20:1

C36H64O4 (560.4804)


   

Fahfa 22:2/14:1

Fahfa 22:2/14:1

C36H64O4 (560.4804)


   

Fahfa 22:3/14:0

Fahfa 22:3/14:0

C36H64O4 (560.4804)


   

Fahfa 16:3/20:0

Fahfa 16:3/20:0

C36H64O4 (560.4804)


   

Fahfa 18:0/18:3

Fahfa 18:0/18:3

C36H64O4 (560.4804)


   

Fahfa 20:0/16:3

Fahfa 20:0/16:3

C36H64O4 (560.4804)


   

(1-hydroxy-3-tetradecanoyloxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

(1-hydroxy-3-tetradecanoyloxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C35H60O5 (560.4441)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate

C35H60O5 (560.4441)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropyl] (Z)-hexadec-9-enoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropyl] (Z)-hexadec-9-enoate

C35H60O5 (560.4441)


   

(1-decanoyloxy-3-hydroxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

(1-decanoyloxy-3-hydroxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C35H60O5 (560.4441)


   

(1-dodecanoyloxy-3-hydroxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

(1-dodecanoyloxy-3-hydroxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C35H60O5 (560.4441)


   

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C35H60O5 (560.4441)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropyl] hexadecanoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropyl] hexadecanoate

C35H60O5 (560.4441)


   

(Z)-8-[(9Z,12Z)-octadeca-9,12-dienoyl]oxyoctadec-9-enoic acid

(Z)-8-[(9Z,12Z)-octadeca-9,12-dienoyl]oxyoctadec-9-enoic acid

C36H64O4 (560.4804)


   

(1-hexanoyloxy-3-hydroxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

(1-hexanoyloxy-3-hydroxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C35H60O5 (560.4441)


   

(1-hydroxy-3-octanoyloxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

(1-hydroxy-3-octanoyloxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C35H60O5 (560.4441)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

12-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

12-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

[(2S)-1-hydroxy-3-tetradecanoyloxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-1-hydroxy-3-tetradecanoyloxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C35H60O5 (560.4441)


   

15-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

15-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

[(2S)-1-dodecanoyloxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-1-dodecanoyloxy-3-hydroxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C35H60O5 (560.4441)


   

[(2S)-1-decanoyloxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-1-decanoyloxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C35H60O5 (560.4441)


   

7-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

7-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

10-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

10-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

[(2S)-3-hydroxy-2-tetradecanoyloxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-3-hydroxy-2-tetradecanoyloxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C35H60O5 (560.4441)


   

[(2S)-3-hydroxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-3-hydroxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C35H60O5 (560.4441)


   

14-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

14-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

13-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

13-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

[(2S)-2-dodecanoyloxy-3-hydroxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-2-dodecanoyloxy-3-hydroxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C35H60O5 (560.4441)


   

2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

4-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

4-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

6-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

6-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

11-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

11-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

9-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

9-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] hexadecanoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] hexadecanoate

C35H60O5 (560.4441)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropyl] (4E,7E)-hexadeca-4,7-dienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropyl] (4E,7E)-hexadeca-4,7-dienoate

C35H60O5 (560.4441)


   

[(2S)-1-hydroxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-1-hydroxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C35H60O5 (560.4441)


   

5-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

5-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxyhexadecanoic acid

C36H64O4 (560.4804)


   

[(2S)-2-decanoyloxy-3-hydroxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-2-decanoyloxy-3-hydroxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C35H60O5 (560.4441)


   

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (E)-hexadec-7-enoate

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (E)-hexadec-7-enoate

C35H60O5 (560.4441)


   

2-[Carboxy-(2-dodecanoyloxy-3-octanoyloxypropoxy)methoxy]ethyl-trimethylazanium

2-[Carboxy-(2-dodecanoyloxy-3-octanoyloxypropoxy)methoxy]ethyl-trimethylazanium

C30H58NO8+ (560.4162)


   

2-[Carboxy-(3-nonanoyloxy-2-undecanoyloxypropoxy)methoxy]ethyl-trimethylazanium

2-[Carboxy-(3-nonanoyloxy-2-undecanoyloxypropoxy)methoxy]ethyl-trimethylazanium

C30H58NO8+ (560.4162)


   

2-[Carboxy-[2,3-di(decanoyloxy)propoxy]methoxy]ethyl-trimethylazanium

2-[Carboxy-[2,3-di(decanoyloxy)propoxy]methoxy]ethyl-trimethylazanium

C30H58NO8+ (560.4162)


   

2-[Carboxy-(3-henicosanoyloxy-2-hydroxypropoxy)methoxy]ethyl-trimethylazanium

2-[Carboxy-(3-henicosanoyloxy-2-hydroxypropoxy)methoxy]ethyl-trimethylazanium

C31H62NO7+ (560.4526)


   

2-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C30H59NO6P+ (560.408)


   

2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone

2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone

C38H56O3 (560.4229)


   

DG(14:1(9Z)/18:3(9Z,12Z,15Z)/0:0)

DG(14:1(9Z)/18:3(9Z,12Z,15Z)/0:0)

C35H60O5 (560.4441)


   

DG(14:0/18:4(6Z,9Z,12Z,15Z)/0:0)

DG(14:0/18:4(6Z,9Z,12Z,15Z)/0:0)

C35H60O5 (560.4441)


   

1,2-dihexadecadienoyl-sn-glycerol

1,2-dihexadecadienoyl-sn-glycerol

C35H60O5 (560.4441)


A 1,2-diacyl-sn-glycerol in which both the acyl groups are specified as hexadecadienoyl (the position of the two double bonds is unspecified).

   

2beta-methylbacteriohopane-32,33,34,35-tetrol

2beta-methylbacteriohopane-32,33,34,35-tetrol

C36H64O4 (560.4804)


A hopanoid that consists of bacteriohopane-32,33,34,35-tetrol carrying an additional methyl substituent at the 2beta-position.

   

TG(32:4)

TG(12:0(1)_10:2_10:2)

C35H60O5 (560.4441)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

WE(39:9)

WE(23:5_16:4)

C39H60O2 (560.4593)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

TG(31:4)

TG(8:0_11:1_12:3)

C34H56O6 (560.4077)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

OAHFA(36:3)

OAHFA(18:1_18:2)

C36H64O4 (560.4804)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   

FAHFA 10:0/O-26:3

FAHFA 10:0/O-26:3

C36H64O4 (560.4804)


   

FAHFA 10:1/O-26:2

FAHFA 10:1/O-26:2

C36H64O4 (560.4804)


   

FAHFA 10:2/O-26:1

FAHFA 10:2/O-26:1

C36H64O4 (560.4804)


   

FAHFA 10:3/O-26:0

FAHFA 10:3/O-26:0

C36H64O4 (560.4804)


   

FAHFA 11:0/O-25:3

FAHFA 11:0/O-25:3

C36H64O4 (560.4804)


   

FAHFA 11:1/O-25:2

FAHFA 11:1/O-25:2

C36H64O4 (560.4804)


   

FAHFA 11:2/O-25:1

FAHFA 11:2/O-25:1

C36H64O4 (560.4804)


   

FAHFA 11:3/O-25:0

FAHFA 11:3/O-25:0

C36H64O4 (560.4804)


   

FAHFA 12:0/O-24:3

FAHFA 12:0/O-24:3

C36H64O4 (560.4804)


   

FAHFA 12:1/O-24:2

FAHFA 12:1/O-24:2

C36H64O4 (560.4804)


   

FAHFA 12:2/O-24:1

FAHFA 12:2/O-24:1

C36H64O4 (560.4804)


   

FAHFA 12:3/O-24:0

FAHFA 12:3/O-24:0

C36H64O4 (560.4804)


   

FAHFA 13:0/O-23:3

FAHFA 13:0/O-23:3

C36H64O4 (560.4804)


   

FAHFA 13:1/O-23:2

FAHFA 13:1/O-23:2

C36H64O4 (560.4804)


   

FAHFA 13:2/O-23:1

FAHFA 13:2/O-23:1

C36H64O4 (560.4804)


   

FAHFA 13:3/O-23:0

FAHFA 13:3/O-23:0

C36H64O4 (560.4804)


   

FAHFA 14:0/O-22:3

FAHFA 14:0/O-22:3

C36H64O4 (560.4804)


   

FAHFA 14:1/O-22:2

FAHFA 14:1/O-22:2

C36H64O4 (560.4804)


   

FAHFA 14:2/O-22:1

FAHFA 14:2/O-22:1

C36H64O4 (560.4804)


   

FAHFA 14:3/O-22:0

FAHFA 14:3/O-22:0

C36H64O4 (560.4804)


   

FAHFA 15:0/O-21:3

FAHFA 15:0/O-21:3

C36H64O4 (560.4804)


   

FAHFA 15:1/O-21:2

FAHFA 15:1/O-21:2

C36H64O4 (560.4804)


   

FAHFA 15:2/O-21:1

FAHFA 15:2/O-21:1

C36H64O4 (560.4804)


   

FAHFA 15:3/O-21:0

FAHFA 15:3/O-21:0

C36H64O4 (560.4804)


   

FAHFA 16:0/O-20:3

FAHFA 16:0/O-20:3

C36H64O4 (560.4804)


   

FAHFA 16:1/O-20:2

FAHFA 16:1/O-20:2

C36H64O4 (560.4804)


   

FAHFA 16:2/O-20:1

FAHFA 16:2/O-20:1

C36H64O4 (560.4804)


   

FAHFA 16:3/O-20:0

FAHFA 16:3/O-20:0

C36H64O4 (560.4804)


   

FAHFA 17:0/O-19:3

FAHFA 17:0/O-19:3

C36H64O4 (560.4804)


   

FAHFA 17:1/O-19:2

FAHFA 17:1/O-19:2

C36H64O4 (560.4804)


   

FAHFA 17:2/O-19:1

FAHFA 17:2/O-19:1

C36H64O4 (560.4804)


   

FAHFA 17:3/O-19:0

FAHFA 17:3/O-19:0

C36H64O4 (560.4804)


   

FAHFA 18:0/O-18:3

FAHFA 18:0/O-18:3

C36H64O4 (560.4804)


   

FAHFA 18:1/O-18:2

FAHFA 18:1/O-18:2

C36H64O4 (560.4804)


   

FAHFA 18:2/O-18:1

FAHFA 18:2/O-18:1

C36H64O4 (560.4804)


   

FAHFA 18:3(6Z,9Z,12Z)/12O-18:0

FAHFA 18:3(6Z,9Z,12Z)/12O-18:0

C36H64O4 (560.4804)


   

FAHFA 18:3/O-18:0

FAHFA 18:3/O-18:0

C36H64O4 (560.4804)


   

FAHFA 19:0/O-17:3

FAHFA 19:0/O-17:3

C36H64O4 (560.4804)


   

FAHFA 19:1/O-17:2

FAHFA 19:1/O-17:2

C36H64O4 (560.4804)


   

FAHFA 19:2/O-17:1

FAHFA 19:2/O-17:1

C36H64O4 (560.4804)


   

FAHFA 19:3/O-17:0

FAHFA 19:3/O-17:0

C36H64O4 (560.4804)


   

FAHFA 20:0/O-16:3

FAHFA 20:0/O-16:3

C36H64O4 (560.4804)


   

FAHFA 20:1/O-16:2

FAHFA 20:1/O-16:2

C36H64O4 (560.4804)


   

FAHFA 20:2/O-16:1

FAHFA 20:2/O-16:1

C36H64O4 (560.4804)


   

FAHFA 20:3(8Z,11Z,14Z)/3O-16:0

FAHFA 20:3(8Z,11Z,14Z)/3O-16:0

C36H64O4 (560.4804)


   

FAHFA 20:3/O-16:0

FAHFA 20:3/O-16:0

C36H64O4 (560.4804)


   

FAHFA 21:0/O-15:3

FAHFA 21:0/O-15:3

C36H64O4 (560.4804)


   

FAHFA 21:1/O-15:2

FAHFA 21:1/O-15:2

C36H64O4 (560.4804)


   

FAHFA 21:2/O-15:1

FAHFA 21:2/O-15:1

C36H64O4 (560.4804)


   

FAHFA 21:3/O-15:0

FAHFA 21:3/O-15:0

C36H64O4 (560.4804)


   

FAHFA 22:0/O-14:3

FAHFA 22:0/O-14:3

C36H64O4 (560.4804)


   

FAHFA 22:1/O-14:2

FAHFA 22:1/O-14:2

C36H64O4 (560.4804)


   

FAHFA 22:2/O-14:1

FAHFA 22:2/O-14:1

C36H64O4 (560.4804)


   

FAHFA 22:3(10Z,13Z,16Z)/2O-14:0

FAHFA 22:3(10Z,13Z,16Z)/2O-14:0

C36H64O4 (560.4804)


   

FAHFA 22:3/O-14:0

FAHFA 22:3/O-14:0

C36H64O4 (560.4804)


   

FAHFA 23:0/O-13:3

FAHFA 23:0/O-13:3

C36H64O4 (560.4804)


   

FAHFA 23:1/O-13:2

FAHFA 23:1/O-13:2

C36H64O4 (560.4804)


   

FAHFA 23:2/O-13:1

FAHFA 23:2/O-13:1

C36H64O4 (560.4804)


   

FAHFA 23:3/O-13:0

FAHFA 23:3/O-13:0

C36H64O4 (560.4804)


   

FAHFA 24:0/O-12:3

FAHFA 24:0/O-12:3

C36H64O4 (560.4804)


   

FAHFA 24:1/O-12:2

FAHFA 24:1/O-12:2

C36H64O4 (560.4804)


   

FAHFA 24:2/O-12:1

FAHFA 24:2/O-12:1

C36H64O4 (560.4804)


   

FAHFA 24:3/O-12:0

FAHFA 24:3/O-12:0

C36H64O4 (560.4804)


   

FAHFA 25:0/O-11:3

FAHFA 25:0/O-11:3

C36H64O4 (560.4804)


   

FAHFA 25:1/O-11:2

FAHFA 25:1/O-11:2

C36H64O4 (560.4804)


   

FAHFA 25:2/O-11:1

FAHFA 25:2/O-11:1

C36H64O4 (560.4804)


   

FAHFA 25:3/O-11:0

FAHFA 25:3/O-11:0

C36H64O4 (560.4804)


   

FAHFA 26:0/O-10:3

FAHFA 26:0/O-10:3

C36H64O4 (560.4804)


   

FAHFA 26:1/O-10:2

FAHFA 26:1/O-10:2

C36H64O4 (560.4804)


   

FAHFA 26:2/O-10:1

FAHFA 26:2/O-10:1

C36H64O4 (560.4804)


   

FAHFA 26:3/O-10:0

FAHFA 26:3/O-10:0

C36H64O4 (560.4804)


   

1,2-DG 32:4

1,2-DG 32:4

C35H60O5 (560.4441)


   

DG 10:0_22:4

DG 10:0_22:4

C35H60O5 (560.4441)


   

DG 12:0_20:4

DG 12:0_20:4

C35H60O5 (560.4441)


   

DG 14:0_18:4

DG 14:0_18:4

C35H60O5 (560.4441)


   

DG 14:1_18:3

DG 14:1_18:3

C35H60O5 (560.4441)


   

DG P-16:1_17:2

DG P-16:1_17:2

C36H64O4 (560.4804)


   
   

Hexaprenylmethylmethoxy-1,4 benzoquinone

Hexaprenylmethylmethoxy-1,4 benzoquinone

C38H56O3 (560.4229)


   
   
   

7-(acetyloxy)-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-11-yl acetate

7-(acetyloxy)-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-11-yl acetate

C34H56O6 (560.4077)


   

(2r,3r,4s,5s,6r)-2-{[(1r,3ar,7s,9ar,9bs,11ar)-1-[(2r,5s)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,3ar,7s,9ar,9bs,11ar)-1-[(2r,5s)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C34H56O6 (560.4077)


   

2-{[1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C34H56O6 (560.4077)


   

2-{[1-(5,6-dimethylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5,6-dimethylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C34H56O6 (560.4077)


   

2,6,10,14,19,23,27,31-octamethyldotriaconta-6,10,12,14,16,18,22,26,30-nonaen-2-ol

2,6,10,14,19,23,27,31-octamethyldotriaconta-6,10,12,14,16,18,22,26,30-nonaen-2-ol

C40H64O (560.4957)


   

(6e,10e,12e,14e,16e,18e,22e,26e)-2,6,10,14,19,23,27,31-octamethyldotriaconta-6,10,12,14,16,18,22,26,30-nonaen-2-ol

(6e,10e,12e,14e,16e,18e,22e,26e)-2,6,10,14,19,23,27,31-octamethyldotriaconta-6,10,12,14,16,18,22,26,30-nonaen-2-ol

C40H64O (560.4957)


   

(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-7-(acetyloxy)-1-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-11-yl acetate

(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-7-(acetyloxy)-1-[(2s,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-11-yl acetate

C34H56O6 (560.4077)


   

(7r)-7-[(3r,3as,5ar,5br,7as,11as,11br,13s,13ar,13bs)-5a,5b,8,8,11a,13,13b-heptamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]octane-1,2,3,4-tetrol

(7r)-7-[(3r,3as,5ar,5br,7as,11as,11br,13s,13ar,13bs)-5a,5b,8,8,11a,13,13b-heptamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]octane-1,2,3,4-tetrol

C36H64O4 (560.4804)


   

(2s,3r,4r,7r)-7-[(3r,3as,5ar,5br,7as,11as,11br,13s,13ar,13bs)-5a,5b,8,8,11a,13,13b-heptamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]octane-1,2,3,4-tetrol

(2s,3r,4r,7r)-7-[(3r,3as,5ar,5br,7as,11as,11br,13s,13ar,13bs)-5a,5b,8,8,11a,13,13b-heptamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]octane-1,2,3,4-tetrol

C36H64O4 (560.4804)


   

1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl 1-methyl propanedioate

1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl 1-methyl propanedioate

C34H56O6 (560.4077)


   

(5r)-3-{12-[(2r,3s)-3-{2-[(2r,3s)-3-dodecyloxiran-2-yl]ethyl}oxiran-2-yl]-8-oxododecyl}-5-methyl-5h-furan-2-one

(5r)-3-{12-[(2r,3s)-3-{2-[(2r,3s)-3-dodecyloxiran-2-yl]ethyl}oxiran-2-yl]-8-oxododecyl}-5-methyl-5h-furan-2-one

C35H60O5 (560.4441)


   

2-{5-[7-(acetyloxy)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5-methyloxolan-2-yl}propan-2-yl acetate

2-{5-[7-(acetyloxy)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5-methyloxolan-2-yl}propan-2-yl acetate

C34H56O6 (560.4077)


   

2-{[9a,11a-dimethyl-1-(6-methyl-5-methylideneheptan-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[9a,11a-dimethyl-1-(6-methyl-5-methylideneheptan-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C34H56O6 (560.4077)


   

6-[(1s,3as,9ar)-2,8-dihydroxy-3a,6,6,7,9b,11a-hexamethyl-10-oxo-dodecahydrocyclopenta[a]phenanthren-1-yl]-2,6-dimethyl-5-oxoheptan-2-yl acetate

6-[(1s,3as,9ar)-2,8-dihydroxy-3a,6,6,7,9b,11a-hexamethyl-10-oxo-dodecahydrocyclopenta[a]phenanthren-1-yl]-2,6-dimethyl-5-oxoheptan-2-yl acetate

C34H56O6 (560.4077)


   

7-{5a,5b,8,8,11a,13,13b-heptamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl}octane-1,2,3,4-tetrol

7-{5a,5b,8,8,11a,13,13b-heptamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl}octane-1,2,3,4-tetrol

C36H64O4 (560.4804)


   

(2r,3r,4s,5s,6r)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r)-6-methyl-5-methylideneheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r)-6-methyl-5-methylideneheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C34H56O6 (560.4077)


   

(1s,3ar,3br,5ar,7r,9ar,9br,11r,11ar)-7-(acetyloxy)-1-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-11-yl acetate

(1s,3ar,3br,5ar,7r,9ar,9br,11r,11ar)-7-(acetyloxy)-1-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-11-yl acetate

C34H56O6 (560.4077)


   

(3s)-3-[(3e,7e,11e,13e,15e,19e,23e)-3,7,11,16,20,24,28-heptamethylnonacosa-3,7,11,13,15,19,23,27-octaen-1-yl]-2,2-dimethyloxirane

(3s)-3-[(3e,7e,11e,13e,15e,19e,23e)-3,7,11,16,20,24,28-heptamethylnonacosa-3,7,11,13,15,19,23,27-octaen-1-yl]-2,2-dimethyloxirane

C40H64O (560.4957)


   

(2r,3r,4s,5s,6r)-2-{[(1r,3ar,5as,7s,9as,9br,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,3ar,5as,7s,9as,9br,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C34H56O6 (560.4077)


   

(1s,3ar,3br,5ar,7r,9ar,9br,11ar)-1-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl 1-methyl propanedioate

(1s,3ar,3br,5ar,7r,9ar,9br,11ar)-1-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl 1-methyl propanedioate

C34H56O6 (560.4077)


   

2-[(2s,5r)-5-[(1s,3ar,3br,5ar,7s,9ar,9bs,11r,11ar)-7-(acetyloxy)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5-methyloxolan-2-yl]propan-2-yl acetate

2-[(2s,5r)-5-[(1s,3ar,3br,5ar,7s,9ar,9bs,11r,11ar)-7-(acetyloxy)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-5-methyloxolan-2-yl]propan-2-yl acetate

C34H56O6 (560.4077)