Exact Mass: 522.4066218
Exact Mass Matches: 522.4066218
Found 221 metabolites which its exact mass value is equals to given mass value 522.4066218
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Panaxydol linoleate
Panaxydol linoleate is found in tea. Panaxydol linoleate is a constituent of Panax ginseng (ginseng). Constituent of Panax ginseng (ginseng). Panaxydol linoleate is found in tea.
LysoPA(24:0/0:0)
LysoPA(24:0/0:0) is a lysophosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. Lysophosphatidic acids can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) or C-2 (sn-2) position. Fatty acids containing 16 and 18 carbons are the most common. LysoPA(24:0/0:0), in particular, consists of one chain of lignoceric acid at the C-1 position. Lysophosphatidic acid is the simplest possible glycerophospholipid. It is the biosynthetic precursor of phosphatidic acid. Although it is present at very low levels only in animal tissues, it is extremely important biologically, influencing many biochemical processes.
LysoPA(i-24:0/0:0)
LysoPA(i-24:0/0:0) is a lysophosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. Lysophosphatidic acids can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) or C-2 (sn-2) position. Fatty acids containing 16 and 18 carbons are the most common. LysoPA(i-24:0/0:0), in particular, consists of one chain of isotetracosanoic acid at the C-1 position. Lysophosphatidic acid is the simplest possible glycerophospholipid. It is the biosynthetic precursor of phosphatidic acid. Although it is present at very low levels only in animal tissues, it is extremely important biologically, influencing many biochemical processes.
N-Nervonoyl Arginine
N-nervonoyl arginine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Nervonic acid amide of Arginine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Nervonoyl Arginine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Nervonoyl Arginine is therefore classified as a very long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
DG(10:0/18:2(10E,12Z)+=O(9)/0:0)
DG(10:0/18:2(10E,12Z)+=O(9)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(10:0/18:2(10E,12Z)+=O(9)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:2(10E,12Z)+=O(9)/10:0/0:0)
DG(18:2(10E,12Z)+=O(9)/10:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:2(10E,12Z)+=O(9)/10:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(10:0/0:0/18:2(10E,12Z)+=O(9))
DG(10:0/0:0/18:2(10E,12Z)+=O(9)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:2(10E,12Z)+=O(9)/0:0/10:0)
DG(18:2(10E,12Z)+=O(9)/0:0/10:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(10:0/18:2(9Z,11E)+=O(13)/0:0)
DG(10:0/18:2(9Z,11E)+=O(13)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(10:0/18:2(9Z,11E)+=O(13)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:2(9Z,11E)+=O(13)/10:0/0:0)
DG(18:2(9Z,11E)+=O(13)/10:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:2(9Z,11E)+=O(13)/10:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(10:0/0:0/18:2(9Z,11E)+=O(13))
DG(10:0/0:0/18:2(9Z,11E)+=O(13)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:2(9Z,11E)+=O(13)/0:0/10:0)
DG(18:2(9Z,11E)+=O(13)/0:0/10:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(10:0/18:3(10,12,15)-OH(9)/0:0)
DG(10:0/18:3(10,12,15)-OH(9)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(10:0/18:3(10,12,15)-OH(9)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:3(10,12,15)-OH(9)/10:0/0:0)
DG(18:3(10,12,15)-OH(9)/10:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(10,12,15)-OH(9)/10:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(10:0/0:0/18:3(10,12,15)-OH(9))
DG(10:0/0:0/18:3(10,12,15)-OH(9)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:3(10,12,15)-OH(9)/0:0/10:0)
DG(18:3(10,12,15)-OH(9)/0:0/10:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(10:0/18:3(9,11,15)-OH(13)/0:0)
DG(10:0/18:3(9,11,15)-OH(13)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(10:0/18:3(9,11,15)-OH(13)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(18:3(9,11,15)-OH(13)/10:0/0:0)
DG(18:3(9,11,15)-OH(13)/10:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:3(9,11,15)-OH(13)/10:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(10:0/0:0/18:3(9,11,15)-OH(13))
DG(10:0/0:0/18:3(9,11,15)-OH(13)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(18:3(9,11,15)-OH(13)/0:0/10:0)
DG(18:3(9,11,15)-OH(13)/0:0/10:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(8:0/20:3(6,8,11)-OH(5)/0:0)
DG(8:0/20:3(6,8,11)-OH(5)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(8:0/20:3(6,8,11)-OH(5)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:3(6,8,11)-OH(5)/8:0/0:0)
DG(20:3(6,8,11)-OH(5)/8:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:3(6,8,11)-OH(5)/8:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(8:0/0:0/20:3(6,8,11)-OH(5))
DG(8:0/0:0/20:3(6,8,11)-OH(5)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:3(6,8,11)-OH(5)/0:0/8:0)
DG(20:3(6,8,11)-OH(5)/0:0/8:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
(+)-(20S)-20-(dimethylamino)-3alpha-(methylbenzoylamino)-5alpha-pregn-12beta-yl acetate
(-)-duryne E
An enyne that is (4E,15Z,21Z,32E)-hexatriaconta-4,15,21,32-tetraene-1,35-diyne substituted by hydroxy groups at positions 3 and 34 (the 3R,34R-stereoisomer). It has been isolated from the marine sponge Petrosia.
(5Z,7E)-(1S,3R)-18-[m-(1-hydroxy-1-ethylpropyl)-benzyloxy]-23,24-dinor-9,10-seco-5,7,10(19)-cholatriene-1,3-diol
1alpha-hydroxy-18-[m-(1-hydroxy-1-ethylpropyl)-benzyloxy]-23,24,25,26,27-pentanorvitamin D3
ethyldimethyl[3-[(1-oxoisooctadecyl)amino]propyl]ammonium ethyl sulphate
1,4-Bis(2-hydroxy-3,5-di-tert-butylbenzyl)piperazine
ethyldimethyl[3-[(1-oxooctadecyl)amino]propyl]ammonium ethyl sulphate
4-[4-[4-[4-[4-[4-(4-Hydroxybutoxy)butoxy]butoxy]butoxy]butoxy]butoxy]butan-1-ol
[(2S)-1-hydroxy-3-octanoyloxypropan-2-yl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate
[(2S)-3-hydroxy-2-octanoyloxypropyl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate
[(2R)-2-hydroxy-3-octanoyloxypropyl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate
[(2S)-2-hydroxy-3-octanoyloxypropyl] (6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoate
[(2S)-1-decanoyloxy-3-hydroxypropan-2-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate
[(2S)-2-decanoyloxy-3-hydroxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate
[(2R)-3-decanoyloxy-2-hydroxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate
[(2S)-3-decanoyloxy-2-hydroxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate
[(2S)-1-decanoyloxy-3-hydroxypropan-2-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate
[(2S)-2-decanoyloxy-3-hydroxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate
[(2R)-3-decanoyloxy-2-hydroxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate
[(2S)-3-decanoyloxy-2-hydroxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate
[3-Carboxy-2-[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyloxy]propyl]-trimethylazanium
C31H56NO5+ (522.4158266000001)
[3-Carboxy-2-[15-(3,4-dimethyl-5-propylfuran-2-yl)pentadecanoyloxy]propyl]-trimethylazanium
C31H56NO5+ (522.4158266000001)
4-(aminomethyl)-N-[1-(octylamino)-1-oxo-3-[4-(pyridin-4-ylmethoxy)phenyl]propan-2-yl]-1-cyclohexanecarboxamide
2-[hydroxy-[(2R)-2-methoxy-3-[(Z)-octadec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
C27H57NO6P+ (522.3923292000001)
[2-(Hexanoylamino)-3-hydroxypentadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C26H55N2O6P (522.3797539999999)
[2-(Butanoylamino)-3-hydroxyheptadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C26H55N2O6P (522.3797539999999)
[2-(Dodecanoylamino)-3-hydroxynonyl] 2-(trimethylazaniumyl)ethyl phosphate
C26H55N2O6P (522.3797539999999)
[3-Hydroxy-2-(nonanoylamino)dodecyl] 2-(trimethylazaniumyl)ethyl phosphate
C26H55N2O6P (522.3797539999999)
[3-Hydroxy-2-(propanoylamino)octadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C26H55N2O6P (522.3797539999999)
[2-(Heptanoylamino)-3-hydroxytetradecyl] 2-(trimethylazaniumyl)ethyl phosphate
C26H55N2O6P (522.3797539999999)
[3-Hydroxy-2-(octanoylamino)tridecyl] 2-(trimethylazaniumyl)ethyl phosphate
C26H55N2O6P (522.3797539999999)
(2-Acetamido-3-hydroxynonadecyl) 2-(trimethylazaniumyl)ethyl phosphate
C26H55N2O6P (522.3797539999999)
[3-Hydroxy-2-(pentanoylamino)hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C26H55N2O6P (522.3797539999999)
[2-(Decanoylamino)-3-hydroxyundecyl] 2-(trimethylazaniumyl)ethyl phosphate
C26H55N2O6P (522.3797539999999)
[3-Hydroxy-2-(undecanoylamino)decyl] 2-(trimethylazaniumyl)ethyl phosphate
C26H55N2O6P (522.3797539999999)
[17-[(E)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (Z)-oct-6-enoate
[3-carboxy-2-[(11E,14E)-pentacosa-11,14-dienoyl]oxypropyl]-trimethylazanium
[(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohexen-1-yl)nona-2,4,6,8-tetraenyl] (Z)-hexadec-9-enoate
[3-Hydroxy-2-(tridecanoylamino)octyl] 2-(trimethylazaniumyl)ethyl phosphate
C26H55N2O6P (522.3797539999999)
(15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-15,18,21,24,27,30,33-heptaenoic acid
(1-hydroxy-3-nonanoyloxypropan-2-yl) (11Z,14Z)-icosa-11,14-dienoate
[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-pentadec-9-enoate
[1-hydroxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-hexadec-9-enoate
(1-hydroxy-3-tridecanoyloxypropan-2-yl) (9Z,12Z)-hexadeca-9,12-dienoate
(1-dodecanoyloxy-3-hydroxypropan-2-yl) (9Z,12Z)-heptadeca-9,12-dienoate
(1-hydroxy-3-undecanoyloxypropan-2-yl) (9Z,12Z)-octadeca-9,12-dienoate
(1-decanoyloxy-3-hydroxypropan-2-yl) (9Z,12Z)-nonadeca-9,12-dienoate
(1-hydroxy-3-propanoyloxypropan-2-yl) (15Z,18Z)-hexacosa-15,18-dienoate
(1-hydroxy-3-octanoyloxypropan-2-yl) (11Z,14Z)-henicosa-11,14-dienoate
(1-hydroxy-3-pentanoyloxypropan-2-yl) (13Z,16Z)-tetracosa-13,16-dienoate
(1-heptanoyloxy-3-hydroxypropan-2-yl) (13Z,16Z)-docosa-13,16-dienoate
[(2S)-1-hydroxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-pentadec-9-enoate
[(2S)-3-hydroxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-pentadec-9-enoate
[(2S)-1-dodecanoyloxy-3-hydroxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate
[(2S)-3-hydroxy-2-undecanoyloxypropyl] (9E,12E)-octadeca-9,12-dienoate
(3-hydroxy-2-tridecanoyloxypropyl) (4E,7E)-hexadeca-4,7-dienoate
[1-carboxy-3-[2-hydroxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-2-dodecanoyloxy-3-hydroxypropyl] (9E,12E)-heptadeca-9,12-dienoate
[(2S)-1-hydroxy-3-undecanoyloxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate
[1-carboxy-3-[2-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[2-hydroxy-3-[(Z)-nonadec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
C27H57NO6P+ (522.3923292000001)
ubiquinone-5
A compound composed of the 2,3-dimethoxy-5-methylbenzoquinone nucleus common to ubiquinones; and a side chain of five isoprenoid units.
1-dodecanoyl-2-(9Z,12Z-heptadecadienoyl)-sn-glycerol
WE(36:7)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
TG(29:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
TG(28:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
LSM(22:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved