Exact Mass: 522.2365894
Exact Mass Matches: 522.2365894
Found 500 metabolites which its exact mass value is equals to given mass value 522.2365894
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Bargustanine
Bargustanine is found in tea. Bargustanine is an alkaloid from roots of Berberis vulgaris (barberry
4-Deoxyphysalolactone
4-Deoxyphysalolactone is found in fruits. 4-Deoxyphysalolactone is a constituent of Physalis peruviana (Cape gooseberry) Constituent of Physalis peruviana (Cape gooseberry). 4-Deoxyphysalolactone is found in fruits.
Arginine-glycine-aspartate-O-methyltyrosine amide
PA(2:0/5-iso PGF2VI)
PA(2:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(2:0/5-iso PGF2VI), in particular, consists of one chain of one acetyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(5-iso PGF2VI/2:0)
PA(5-iso PGF2VI/2:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/2:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of acetyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
Carpelastofuran
4-Deoxyphysalolactone
1alpha-acetoxy-2alpha-senecioyloxy-3alpha,7beta-dihydroxy-8alpha-(2-methyl)-butyryloxy-eremophila-11(12)-en-6alpha,15beta-olide|ligumacrophyllatin
(5,6-dihydroxycoumarin-5-dodecanoate-6-yl)-6beta-D-glucopyranoside|altheacoumaryl glucoside
5alpha-acetoxy-2alpha,3beta-diangeloyloxy-1,8-dihydroxy-10,11-epoxy-bisabol-7(14)-en-4-one
michaolide H
A cembrane diterpenoid with cytotoxic activity isolated from the soft coral Lobophytum michaelae.
(-)-(8S,8R)-4,4-dihydroxy-3,3,5-trimethoxylignan-4-O-beta-D-glucopyranoside
(+)-4,4-O-diangeloylpinoresinol|(1S,3aR,4S,6aR)-tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diylbis-[2-methoxybenzene-4,1-diyl] bis[(2Z)-2-methylbut-2-enoate]
1alpha,6alpha,7beta-triacetoxy-5alpha-hydroxy-15-carboxymethyl-12-oxocassa-13(14)-diene|caesalpin B
Asn Lys Phe Asp
Phe Glu Val Glu
Glu Val Phe Glu
Phe Asp Ile Glu
Asn Phe Ser Arg
Asp Ile Phe Glu
methyl 3-[3,4-dihydroxy-5-(3-methylbut-2-enyl)phenyl]-2-[[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]methyl]-4-methoxy-5-oxofuran-2-carboxylate
methyl 3-[3,4-dihydroxy-2-(3-methylbut-2-enyl)phenyl]-2-[[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]methyl]-4-methoxy-5-oxofuran-2-carboxylate
methyl 3-[3,4-dihydroxy-5-(3-methylbut-2-enyl)phenyl]-2-[[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]methyl]-4-methoxy-5-oxofuran-2-carboxylate
methyl 3-[3,4-dihydroxy-5-(3-methylbut-2-enyl)phenyl]-2-[[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]methyl]-4-methoxy-5-oxofuran-2-carboxylate [IIN-based on: CCMSLIB00000845235]
methyl 3-[3,4-dihydroxy-5-(3-methylbut-2-enyl)phenyl]-2-[[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]methyl]-4-methoxy-5-oxofuran-2-carboxylate [IIN-based: Match]
methyl 3-[3,4-dihydroxy-2-(3-methylbut-2-enyl)phenyl]-2-[[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]methyl]-4-methoxy-5-oxofuran-2-carboxylate [IIN-based on: CCMSLIB00000846693]
methyl 3-[3,4-dihydroxy-5-(3-methylbut-2-enyl)phenyl]-2-[[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]methyl]-4-methoxy-5-oxofuran-2-carboxylate [IIN-based on: CCMSLIB00000845233]
methyl 3-[3,4-dihydroxy-2-(3-methylbut-2-enyl)phenyl]-2-[[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]methyl]-4-methoxy-5-oxofuran-2-carboxylate [IIN-based: Match]
Ala Asn Arg Tyr
Ala Asn Tyr Arg
Ala Arg Asn Tyr
Ala Arg Tyr Asn
Ala Tyr Asn Arg
Ala Tyr Arg Asn
Cys Lys Ser Trp
Cys Lys Trp Ser
Cys Ser Lys Trp
Cys Ser Trp Lys
Cys Trp Lys Ser
Cys Trp Ser Lys
Asp Glu Phe Ile
Asp Glu Phe Leu
Asp Glu Ile Phe
Asp Glu Leu Phe
Asp Phe Glu Ile
Asp Phe Glu Leu
Asp Phe Ile Glu
Asp Phe Lys Asn
Asp Phe Leu Glu
Asp Phe Asn Lys
Asp Ile Glu Phe
Asp Lys Phe Asn
Asp Lys Asn Phe
Asp Leu Glu Phe
Asp Leu Phe Glu
Asp Asn Phe Lys
Asp Asn Lys Phe
Glu Asp Phe Ile
Glu Asp Phe Leu
Glu Asp Ile Phe
Glu Asp Leu Phe
Glu Glu Phe Val
Glu Glu Val Phe
Glu Phe Asp Ile
Glu Phe Asp Leu
Glu Phe Glu Val
Glu Phe Ile Asp
Glu Phe Leu Asp
Glu Phe Val Glu
Glu His His Thr
Glu His Thr His
Glu Ile Asp Phe
Glu Ile Phe Asp
Glu Ile Met Met
Glu Leu Asp Phe
Glu Leu Phe Asp
Glu Leu Met Met
Glu Met Ile Met
Glu Met Leu Met
Glu Met Met Ile
Glu Met Met Leu
Glu Thr His His
Glu Val Glu Phe
Phe Asp Glu Ile
Phe Asp Glu Leu
Phe Asp Lys Asn
Phe Asp Leu Glu
Phe Asp Asn Lys
Phe Glu Asp Ile
Phe Glu Asp Leu
Phe Glu Glu Val
Phe Glu Ile Asp
Phe Glu Leu Asp
Phe Gly His Tyr
Phe Gly Asn Trp
Phe Gly Trp Asn
Phe Gly Tyr His
Phe His Gly Tyr
Phe His Tyr Gly
Phe Ile Asp Glu
Phe Ile Glu Asp
Phe Lys Asp Asn
Phe Lys Asn Asp
Phe Leu Asp Glu
Phe Leu Glu Asp
Phe Asn Asp Lys
Phe Asn Gly Trp
Phe Asn Lys Asp
Phe Asn Arg Ser
Phe Asn Ser Arg
Phe Asn Trp Gly
Phe Pro Pro Tyr
Phe Pro Tyr Pro
Phe Gln Gln Thr
Phe Gln Thr Gln
Phe Arg Asn Ser
Phe Arg Ser Asn
Phe Thr Gln Gln
Phe Val Glu Glu
Phe Trp Gly Asn
Phe Trp Asn Gly
Phe Tyr Gly His
Phe Tyr His Gly
Phe Tyr Pro Pro
Gly Phe His Tyr
Gly Phe Asn Trp
Gly Phe Trp Asn
Gly Phe Tyr His
Gly His Phe Tyr
Gly His Tyr Phe
Gly Asn Phe Trp
Gly Asn Trp Phe
Gly Trp Phe Asn
Gly Trp Asn Phe
Gly Tyr Phe His
Gly Tyr His Phe
His Glu His Thr
His Glu Thr His
His Phe Gly Tyr
His Phe Tyr Gly
His Gly Phe Tyr
His Gly Tyr Phe
His His Glu Thr
His His Met Val
His His Thr Glu
His His Val Met
His Met His Val
His Met Val His
His Thr Glu His
His Thr His Glu
His Val His Met
His Val Met His
His Tyr Phe Gly
His Tyr Gly Phe
Ile Asp Glu Phe
Ile Asp Phe Glu
Ile Glu Asp Phe
Ile Glu Phe Asp
Ile Glu Met Met
Ile Phe Asp Glu
Ile Phe Glu Asp
Ile Met Glu Met
Ile Met Met Glu
Ile Met Pro Tyr
Ile Met Tyr Pro
Ile Asn Asn Tyr
Ile Asn Tyr Asn
Ile Pro Met Tyr
Ile Pro Tyr Met
Ile Tyr Met Pro
Ile Tyr Asn Asn
Ile Tyr Pro Met
Lys Cys Ser Trp
Lys Cys Trp Ser
Lys Asp Phe Asn
Lys Asp Asn Phe
Lys Phe Asp Asn
Lys Phe Asn Asp
Lys Met Met Asn
Lys Met Asn Met
Lys Asn Asp Phe
Lys Asn Phe Asp
Lys Asn Met Met
Lys Ser Cys Trp
Lys Ser Trp Cys
Lys Trp Cys Ser
Lys Trp Ser Cys
Leu Asp Glu Phe
Leu Asp Phe Glu
Leu Glu Asp Phe
Leu Glu Phe Asp
Leu Glu Met Met
Leu Phe Asp Glu
Leu Phe Glu Asp
Leu Met Glu Met
Leu Met Met Glu
Leu Met Pro Tyr
Leu Met Tyr Pro
Leu Asn Asn Tyr
Leu Asn Tyr Asn
Leu Pro Met Tyr
Leu Pro Tyr Met
Leu Tyr Met Pro
Leu Tyr Asn Asn
Leu Tyr Pro Met
Met Glu Ile Met
Met Glu Leu Met
Met Glu Met Ile
Met Glu Met Leu
Met His His Val
Met His Val His
Met Ile Glu Met
Met Ile Met Glu
Met Ile Pro Tyr
Met Ile Tyr Pro
Met Lys Met Asn
Met Lys Asn Met
Met Leu Glu Met
Met Leu Met Glu
Met Leu Pro Tyr
Met Leu Tyr Pro
Met Met Glu Ile
Met Met Glu Leu
Met Met Ile Glu
Met Met Lys Asn
Met Met Leu Glu
Met Met Asn Lys
Met Asn Lys Met
Met Asn Met Lys
Met Pro Ile Tyr
Met Pro Leu Tyr
Met Pro Tyr Ile
Met Pro Tyr Leu
Met Val His His
Met Tyr Ile Pro
Met Tyr Leu Pro
Met Tyr Pro Ile
Met Tyr Pro Leu
Asn Asp Phe Lys
Asn Asp Lys Phe
Asn Phe Asp Lys
Asn Phe Gly Trp
Asn Phe Lys Asp
Asn Phe Trp Gly
Asn Gly Phe Trp
Asn Gly Trp Phe
Asn Ile Asn Tyr
Asn Ile Tyr Asn
Asn Lys Asp Phe
Asn Lys Met Met
Asn Leu Asn Tyr
Asn Leu Tyr Asn
Asn Met Lys Met
Asn Met Met Lys
Asn Asn Ile Tyr
Asn Asn Leu Tyr
Asn Asn Tyr Ile
Asn Asn Tyr Leu
Asn Gln Val Tyr
Asn Gln Tyr Val
Asn Val Gln Tyr
Asn Val Tyr Gln
Asn Trp Phe Gly
Asn Trp Gly Phe
Asn Tyr Ile Asn
Asn Tyr Leu Asn
Asn Tyr Asn Ile
Asn Tyr Asn Leu
Asn Tyr Gln Val
Asn Tyr Val Gln
Pro Phe Pro Tyr
Pro Phe Tyr Pro
Pro Ile Met Tyr
Pro Ile Tyr Met
Pro Leu Met Tyr
Pro Leu Tyr Met
Pro Met Ile Tyr
Pro Met Leu Tyr
Pro Met Tyr Ile
Pro Met Tyr Leu
Pro Pro Phe Tyr
Pro Pro Tyr Phe
Pro Tyr Phe Pro
Pro Tyr Ile Met
Pro Tyr Leu Met
Pro Tyr Met Ile
Pro Tyr Met Leu
Pro Tyr Pro Phe
Gln Phe Gln Thr
Gln Phe Thr Gln
Gln Asn Val Tyr
Gln Asn Tyr Val
Gln Gln Phe Thr
Gln Gln Thr Phe
Gln Thr Phe Gln
Gln Thr Gln Phe
Gln Val Asn Tyr
Gln Val Tyr Asn
Gln Tyr Asn Val
Gln Tyr Val Asn
Ser Cys Lys Trp
Ser Cys Trp Lys
Ser Lys Cys Trp
Ser Lys Trp Cys
Ser Trp Cys Lys
Ser Trp Lys Cys
Thr Glu His His
Thr Phe Gln Gln
Thr His Glu His
Thr His His Glu
Thr Gln Phe Gln
Thr Gln Gln Phe
Val Glu Glu Phe
Val Glu Phe Glu
Val Phe Glu Glu
Val His His Met
Val His Met His
Val Met His His
Val Asn Gln Tyr
Val Asn Tyr Gln
Val Gln Asn Tyr
Val Gln Tyr Asn
Val Tyr Asn Gln
Val Tyr Gln Asn
Trp Cys Lys Ser
Trp Cys Ser Lys
Trp Phe Gly Asn
Trp Phe Asn Gly
Trp Gly Phe Asn
Trp Gly Asn Phe
Trp Lys Cys Ser
Trp Lys Ser Cys
Trp Asn Phe Gly
Trp Asn Gly Phe
Trp Ser Cys Lys
Trp Ser Lys Cys
Tyr Phe Gly His
Tyr Phe His Gly
Tyr Phe Pro Pro
Tyr Gly Phe His
Tyr Gly His Phe
Tyr His Phe Gly
Tyr His Gly Phe
Tyr Ile Met Pro
Tyr Ile Asn Asn
Tyr Ile Pro Met
Tyr Leu Met Pro
Tyr Leu Asn Asn
Tyr Leu Pro Met
Tyr Met Ile Pro
Tyr Met Leu Pro
Tyr Met Pro Ile
Tyr Met Pro Leu
Tyr Asn Ile Asn
Tyr Asn Leu Asn
Tyr Asn Asn Ile
Tyr Asn Asn Leu
Tyr Asn Gln Val
Tyr Asn Val Gln
Tyr Pro Phe Pro
Tyr Pro Ile Met
Tyr Pro Leu Met
Tyr Pro Met Ile
Tyr Pro Met Leu
Tyr Pro Pro Phe
Tyr Gln Asn Val
Tyr Gln Arg Gly
Tyr Gln Val Asn
Tyr Val Asn Gln
Tyr Val Gln Asn
Bargustanine
benzene-1,3-dicarboxylic acid,2-ethyl-2-(hydroxymethyl)propane-1,3-diol,hexanedioic acid,propane-1,2-diol
benzene-1,3-dicarboxylic acid,ethane-1,2-diol,2-(2-hydroxyethoxy)ethanol,nonanedioic acid
terbium(3+),1,2,3,4-tetramethylcyclopenta-1,3-diene
nigrasin G
An extended flavonoid that is 5a,10a-dihydro-11H-[1]benzofuro[3,2-b]chromen-11-one substituted by hydroxy groups at positions 1, 3, 8 and 10a and a 3-hydroxy-2,6,10-trimethyldodeca-1,6,10-trien-12-yl group at position 5a. It has been isolated from the twigs of Morus nigra.
2-[(3S,6aR,8S,10aR)-3-hydroxy-1-(3,3,3-trifluoropropyl)-3,4,6,6a,8,9,10,10a-octahydro-2H-pyrano[2,3-c][1,5]oxazocin-8-yl]-N-[(4-phenoxyphenyl)methyl]acetamide
2-[(3R,6aR,8S,10aR)-3-hydroxy-1-(3,3,3-trifluoropropyl)-3,4,6,6a,8,9,10,10a-octahydro-2H-pyrano[2,3-c][1,5]oxazocin-8-yl]-N-[(4-phenoxyphenyl)methyl]acetamide
1-[[(2S,3S)-10-(dimethylamino)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-[4-(trifluoromethyl)phenyl]urea
(2S)-2-[(4R,5R)-4-methyl-5-[[methyl(pyrimidin-5-ylmethyl)amino]methyl]-1,1-dioxo-8-[(E)-2-phenylethenyl]-4,5-dihydro-3H-6,1lambda6,2-benzoxathiazocin-2-yl]propan-1-ol
C28H34N4O4S (522.2300644000001)
1-[[(2S,3R)-10-(dimethylamino)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-[4-(trifluoromethyl)phenyl]urea
2-[(3R,6aR,8R,10aR)-3-hydroxy-1-(3,3,3-trifluoropropyl)-3,4,6,6a,8,9,10,10a-octahydro-2H-pyrano[2,3-c][1,5]oxazocin-8-yl]-N-[(4-phenoxyphenyl)methyl]acetamide
N-[(5S,6R,9R)-5-methoxy-3,6,9-trimethyl-2-oxo-8-(3,3,3-trifluoropropyl)-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-pyridinecarboxamide
2-[(3S,6aR,8R,10aR)-3-hydroxy-1-(3,3,3-trifluoropropyl)-3,4,6,6a,8,9,10,10a-octahydro-2H-pyrano[2,3-c][1,5]oxazocin-8-yl]-N-[(4-phenoxyphenyl)methyl]acetamide
(3S)-2-tert-butylsulfinyl-3-(2-hydroxyethyl)-4-[3-(3-methoxyphenyl)phenyl]-1,3-dihydropyrrolo[3,4-c]pyridine-6-carboxylic acid ethyl ester
1-[[(2R,3R)-10-(dimethylamino)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-[4-(trifluoromethyl)phenyl]urea
(2S)-2-[(4R,5S)-4-methyl-5-[[methyl(pyrimidin-5-ylmethyl)amino]methyl]-1,1-dioxo-8-[(E)-2-phenylethenyl]-4,5-dihydro-3H-6,1lambda6,2-benzoxathiazocin-2-yl]propan-1-ol
C28H34N4O4S (522.2300644000001)
N-[[(10S,11R)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylbenzenesulfonamide
2-[(3S,6aS,8R,10aS)-3-hydroxy-1-(3,3,3-trifluoropropyl)-3,4,6,6a,8,9,10,10a-octahydro-2H-pyrano[2,3-c][1,5]oxazocin-8-yl]-N-[(4-phenoxyphenyl)methyl]acetamide
2-[(3R,6aS,8R,10aS)-3-hydroxy-1-(3,3,3-trifluoropropyl)-3,4,6,6a,8,9,10,10a-octahydro-2H-pyrano[2,3-c][1,5]oxazocin-8-yl]-N-[(4-phenoxyphenyl)methyl]acetamide
2-[(3S,6aS,8S,10aS)-3-hydroxy-1-(3,3,3-trifluoropropyl)-3,4,6,6a,8,9,10,10a-octahydro-2H-pyrano[2,3-c][1,5]oxazocin-8-yl]-N-[(4-phenoxyphenyl)methyl]acetamide
N-[[(10R,11S)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylbenzenesulfonamide
4,4,4-trifluoro-N-[(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl(pyridin-4-ylmethyl)amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]butanamide
4,4,4-trifluoro-N-[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl(pyridin-4-ylmethyl)amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]butanamide
4,4,4-trifluoro-N-[(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl(pyridin-4-ylmethyl)amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]butanamide
4,4,4-trifluoro-N-[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl(pyridin-4-ylmethyl)amino]methyl]-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-8-yl]butanamide
1-[[(2R,3R)-10-(dimethylamino)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-[4-(trifluoromethyl)phenyl]urea
1-[[(2S,3R)-10-(dimethylamino)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-[4-(trifluoromethyl)phenyl]urea
N-[(2S,3S)-2-[[cyclopropylmethyl(methyl)amino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-3,4-dihydro-2H-1,5-benzoxazocin-10-yl]-1,3-benzothiazole-2-carboxamide
C28H34N4O4S (522.2300644000001)
1-[(2S,3S)-2-[(dimethylamino)methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3-[4-(trifluoromethyl)phenyl]urea
(2R)-2-[(4S,5S)-4-methyl-5-[[methyl(pyrimidin-5-ylmethyl)amino]methyl]-1,1-dioxo-8-[(E)-2-phenylethenyl]-4,5-dihydro-3H-6,1lambda6,2-benzoxathiazocin-2-yl]propan-1-ol
C28H34N4O4S (522.2300644000001)
(2R)-2-[(4R,5R)-4-methyl-5-[[methyl(pyrimidin-5-ylmethyl)amino]methyl]-1,1-dioxo-8-[(E)-2-phenylethenyl]-4,5-dihydro-3H-6,1lambda6,2-benzoxathiazocin-2-yl]propan-1-ol
C28H34N4O4S (522.2300644000001)
(2S)-2-[(4S,5R)-4-methyl-5-[[methyl(pyrimidin-5-ylmethyl)amino]methyl]-1,1-dioxo-8-[(E)-2-phenylethenyl]-4,5-dihydro-3H-6,1lambda6,2-benzoxathiazocin-2-yl]propan-1-ol
C28H34N4O4S (522.2300644000001)
N-[[(10S,11S)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylbenzenesulfonamide
N-[[(10S,11R)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylbenzenesulfonamide
2-[(3R,6aS,8S,10aS)-3-hydroxy-1-(3,3,3-trifluoropropyl)-3,4,6,6a,8,9,10,10a-octahydro-2H-pyrano[2,3-c][1,5]oxazocin-8-yl]-N-[(4-phenoxyphenyl)methyl]acetamide
N-[[(10R,11R)-13-[(2R)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylbenzenesulfonamide
N-[[(10R,11R)-13-[(2S)-1-hydroxypropan-2-yl]-11-methyl-14-oxo-9-oxa-13-azatricyclo[13.4.0.02,7]nonadeca-1(19),2,4,6,15,17-hexaen-10-yl]methyl]-N-methylbenzenesulfonamide
(3R)-2-tert-butylsulfinyl-3-(2-hydroxyethyl)-4-[3-(3-methoxyphenyl)phenyl]-1,3-dihydropyrrolo[3,4-c]pyridine-6-carboxylic acid ethyl ester
Methyl 3-[3,4-dihydroxy-2-(3-methylbut-2-enyl)phenyl]-2-[[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]methyl]-4-methoxy-5-oxofuran-2-carboxylate
KL-11743
KL-11743 is a potent, orally active, and glucose-competitive inhibitor of the class I glucose transporters, with IC50s of 115, 137, 90, and 68 nM for GLUT1, GLUT2, GLUT3, and GLUT4, respectively. KL-11743 specifically blocks glucose metabolism. KL-11743 can synergize with electron transport inhibitors to induce cell death[1][2][3].
(2e,4e,6e)-n-[(3s,4r)-3,4-dihydroxy-3-[(1e,3e,5e)-6-[(2-hydroxy-5-oxocyclopent-1-en-1-yl)-c-hydroxycarbonimidoyl]hexa-1,3,5-trien-1-yl]-6-oxocyclohex-1-en-1-yl]-9-methyldeca-2,4,6-trienimidic acid
5-[(1r,2s)-2-{4-[(2r,3s,4s,5s)-5-(2h-1,3-benzodioxol-5-yl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenoxy}-1-hydroxypropyl]-2-methoxyphenol
(8s,9s,10s)-14-hydroxy-3,4,5,15,16-pentamethoxy-9,10-dimethyltricyclo[10.4.0.0²,⁷]hexadeca-1(12),2(7),3,5,13,15-hexaen-8-yl benzoate
5,9-bis(acetyloxy)-16-(methoxymethyl)-4,8,12-trimethyl-17-oxo-3,18-dioxatricyclo[13.3.0.0²,⁴]octadeca-7,11-dien-14-yl acetate
5-[(1r,2r)-2-{4-[(2s,3r,4r,5s)-5-(2h-1,3-benzodioxol-5-yl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenoxy}-1-hydroxypropyl]-2-methoxyphenol
(3s,3ar,4r,6r,6ar,8s,9bs)-6-(acetyloxy)-3,3a-dihydroxy-3,6,9-trimethyl-4-{[(2r)-2-methylbutanoyl]oxy}-2-oxo-4h,5h,6ah,7h,8h,9bh-azuleno[4,5-b]furan-8-yl (2e)-2-methylbut-2-enoate
(2e)-6-{3-[5-(2,5-dihydroxyphenyl)-2-oxo-5h-furan-3-yl]propyl}-7-hydroxy-2-methylhept-2-en-1-yl (2z)-3-(4-hydroxyphenyl)prop-2-enoate
(6s)-6-[(1s)-1-[(1s,3ar,3br,5r,5ar,9as,9br,11as)-5a-chloro-1,3a,5-trihydroxy-9a,11a-dimethyl-9-oxo-2h,3h,3bh,4h,5h,6h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-1-hydroxyethyl]-3,4-dimethyl-5,6-dihydropyran-2-one
(9r,10s)-10-hydroxy-4,5,14,15,16-pentamethoxy-9,10-dimethyltricyclo[10.4.0.0²,⁷]hexadeca-1(12),2(7),3,5,13,15-hexaen-3-yl benzoate
(8r,9s,10r)-8-hydroxy-4,5,14,15,16-pentamethoxy-9,10-dimethyltricyclo[10.4.0.0²,⁷]hexadeca-1(12),2(7),3,5,13,15-hexaen-3-yl benzoate
(6s)-6-[(1s)-1-[(1s,3ar,3br,5s,5as,9ar,9bs,11as)-5-chloro-1,3a,5a-trihydroxy-9a,11a-dimethyl-9-oxo-2h,3h,3bh,4h,5h,6h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-1-hydroxyethyl]-3,4-dimethyl-5,6-dihydropyran-2-one
(7r,21r)-4,17-dihydroxy-7,21-bis(2-hydroxypropan-2-yl)-10-(3-methylbut-2-en-1-yl)-8,12,20-trioxapentacyclo[11.9.0.0³,¹¹.0⁵,⁹.0¹⁴,¹⁹]docosa-1(13),3,5(9),10,14,16,18-heptaen-2-one
2-debenzoyl-2-tigloyl-10-deacetylbaccatin iii
{"Ingredient_id": "HBIN005512","Ingredient_name": "2-debenzoyl-2-tigloyl-10-deacetylbaccatin iii","Alias": "NA","Ingredient_formula": "C27H38O10","Ingredient_Smile": "CC1=C2C(C(=O)C3(C(CC4C(C3C(C(C2(C)C)(CC1O)O)OC(=O)C=C(C)C)(CO4)OC(=O)C)O)C)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "4811","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
Benzoylgomisin H
{"Ingredient_id": "HBIN017813","Ingredient_name": "Benzoylgomisin H","Alias": "benzoylgomisin h","Ingredient_formula": "C30H34O8","Ingredient_Smile": "CC1CC2=CC(=C(C(=C2C3=C(C(=C(C=C3CC1(C)O)OC)OC)OC)OC(=O)C4=CC=CC=C4)OC)OC","Ingredient_weight": "522.6 g/mol","OB_score": "7.510450706","CAS_id": "NA","SymMap_id": "SMIT10159","TCMID_id": "2240","TCMSP_id": "MOL008960","TCM_ID_id": "NA","PubChem_id": "14992069","DrugBank_id": "NA"}