Exact Mass: 519.2961
Exact Mass Matches: 519.2961
Found 500 metabolites which its exact mass value is equals to given mass value 519.2961
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
1-linoleoyl-GPC (18:2)
LysoPC(18:2(9Z,12Z)) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(18:2(9Z,12Z)), in particular, consists of one chain of linoleic acid at the C-1 position. The linoleic acid moiety is derived from seed oils. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins.
Vignatic acid B
Vignatic acid B is found in pulses. Vignatic acid B is a constituent of Vigna radiata (mung bean). Constituent of Vigna radiata (mung bean). Vignatic acid B is found in pulses.
LysoPC(0:0/18:2(9Z,12Z))
LysoPC(0:0/18:2(9Z,12Z)) is a lysophosphatidylcholine, which is a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2 as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. There is also a phospholipase A1, which is able to cleave the sn-1 ester bond. Lysophosphatidylcholine has pro-inflammatory properties in vitro and it is known to be a pathological component of oxidized lipoproteins (LDL) in plasma and of atherosclerotic lesions. Recently, it has been found to have some functions in cell signalling, and specific receptors (coupled to G proteins) have been identified. It activates the specific phospholipase C that releases diacylglycerols and inositol triphosphate with resultant increases in intracellular Ca2+ and activation of protein kinase C. It also activates the mitogen-activated protein kinase in certain cell types. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) or C-2 (sn-2) position. LysoPC(0:0/18:2(9Z,12Z)), in particular, consists of one chain of linoleic acid at the C-2 position.
(4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-Trihydroxydocosa-4,8,10,12,14,19-hexaenoylcarnitine
(4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-trihydroxydocosa-4,8,10,12,14,19-hexaenoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-Trihydroxydocosa-4,9,11,13,15,19-hexaenoylcarnitine
(4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-trihydroxydocosa-4,9,11,13,15,19-hexaenoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-trihydroxydocosa-4,9,11,13,15,19-hexaenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-trihydroxydocosa-4,9,11,13,15,19-hexaenoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-trihydroxydocosa-4,9,11,13,15,19-hexaenoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine
(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7Z,10S,11E)-10-hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine
(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7Z,10S,11E)-10-hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3-[(1S,2R,5S)-5-Hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoylcarnitine
3-[(1S,2R,5S)-5-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoylcarnitine is an acylcarnitine. More specifically, it is an 3-[(1S,2R,5S)-5-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-[(1S,2R,5S)-5-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine 3-[(1S,2R,5S)-5-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoylcarnitine
3-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoylcarnitine is an acylcarnitine. More specifically, it is an 3-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine 3-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4Z)-6-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoylcarnitine
(4Z)-6-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoylcarnitine is an acylcarnitine. More specifically, it is an (4Z)-6-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z)-6-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z)-6-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4Z,7Z)-9-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoylcarnitine
(4Z,7Z)-9-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7Z)-9-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7Z)-9-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7Z)-9-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4Z,7Z,10Z)-12-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoylcarnitine
(4Z,7Z,10Z)-12-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7Z,10Z)-12-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7Z,10Z)-12-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7Z,10Z)-12-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4S,5E)-4-Hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoylcarnitine
(4S,5E)-4-hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoylcarnitine is an acylcarnitine. More specifically, it is an (4S,5E)-4-hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4S,5E)-4-hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4S,5E)-4-hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4Z,7S,8E)-7-Hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoylcarnitine
(4Z,7S,8E)-7-hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7S,8E)-7-hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7S,8E)-7-hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7S,8E)-7-hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
[(3R,4S)-1,1-Difluoro-3-(hexadecanoylamino)-4-hydroxy-4-phenylbutyl]phosphonic acid
[(3S,5S,7S)-7-{(1E,3E)-5-[(2S,3S,5R,6R)-5-{[(2Z,4S)-4-(acetyloxy)pent-2-enoyl]amino}-3,6-dimethyltetrahydro-2H-pyran-2-yl]-3-methylpenta-1,3-dien-1-yl}-1,6-dioxaspiro[2.5]oct-5-yl]acetic acid
[(2S,5S,6R)-6-{(1E,3E)-5-[(2S,3S,5R,6R)-5-{[(2Z,4S)-4-(acetyloxy)pent-2-enoyl]amino}-3,6-dimethyltetrahydro-2H-pyran-2-yl]-3-methylpenta-1,3-dien-1-yl}-5-hydroxy-4-methylidenetetrahydro-2H-pyran-2-yl]acetic acid
4,5-dihydro-7-O-descarbamoyl-7-hydroxygeldanamycin
1-Hydroxy-2-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycero-2-phosphocholine
1-(9Z,12Z-Octadecadienoyl-2-hydroxy-sn-glycero-3-phosphocholine
LysoPC(18:2/0:0)
1-Linoleoylglycerophosphocholine
Ala His His Arg
Ala His Arg His
Ala Arg His His
Glu Phe Lys Pro
Glu Phe Pro Lys
Glu Ile Lys Met
Glu Ile Met Lys
Glu Lys Phe Pro
Glu Lys Ile Met
Glu Lys Leu Met
Glu Lys Met Ile
Glu Lys Met Leu
Glu Lys Pro Phe
Glu Leu Lys Met
Glu Leu Met Lys
Glu Met Ile Lys
Glu Met Lys Ile
Glu Met Lys Leu
Glu Met Leu Lys
Glu Pro Phe Lys
Glu Pro Lys Phe
Phe Glu Lys Pro
Phe Glu Pro Lys
Phe Ile Ile Gln
Phe Ile Leu Gln
Phe Ile Gln Ile
Phe Ile Gln Leu
Phe Lys Glu Pro
Phe Lys Pro Glu
Phe Leu Ile Gln
Phe Leu Leu Gln
Phe Leu Gln Ile
Phe Leu Gln Leu
Phe Pro Glu Lys
Phe Pro Lys Glu
Phe Pro Arg Thr
Phe Pro Thr Arg
Phe Gln Ile Ile
Phe Gln Ile Leu
Phe Gln Leu Ile
Phe Gln Leu Leu
Phe Arg Pro Thr
Phe Arg Thr Pro
Phe Arg Val Val
Phe Thr Pro Arg
Phe Thr Arg Pro
Phe Val Arg Val
Phe Val Val Arg
His Ala His Arg
His Ala Arg His
His His Ala Arg
His His Lys Val
His His Arg Ala
His His Val Lys
His Lys His Val
His Lys Val His
His Arg Ala His
His Arg His Ala
His Val His Lys
His Val Lys His
Ile Glu Lys Met
Ile Glu Met Lys
Ile Phe Ile Gln
Ile Phe Leu Gln
Ile Phe Gln Ile
Ile Phe Gln Leu
Ile Ile Phe Gln
Ile Ile Gln Phe
Ile Lys Glu Met
Ile Lys Met Glu
Ile Lys Pro Tyr
Ile Lys Tyr Pro
Ile Leu Phe Gln
Ile Leu Gln Phe
Ile Met Glu Lys
Ile Met Lys Glu
Ile Met Arg Thr
Ile Met Thr Arg
Ile Pro Lys Tyr
Ile Pro Gln Tyr
Ile Pro Tyr Lys
Ile Pro Tyr Gln
Ile Gln Phe Ile
Ile Gln Phe Leu
Ile Gln Ile Phe
Ile Gln Leu Phe
Ile Gln Pro Tyr
Ile Gln Tyr Pro
Ile Arg Met Thr
Ile Arg Thr Met
Ile Thr Met Arg
Ile Thr Arg Met
Ile Thr Thr Trp
Ile Thr Trp Thr
Ile Trp Thr Thr
Ile Tyr Lys Pro
Ile Tyr Pro Lys
Ile Tyr Pro Gln
Ile Tyr Gln Pro
Lys Glu Phe Pro
Lys Glu Ile Met
Lys Glu Leu Met
Lys Glu Met Ile
Lys Glu Met Leu
Lys Glu Pro Phe
Lys Phe Glu Pro
Lys Phe Pro Glu
Lys His His Val
Lys His Val His
Lys Ile Glu Met
Lys Ile Met Glu
Lys Ile Pro Tyr
Lys Ile Tyr Pro
Lys Lys Met Asn
Lys Lys Asn Met
Lys Leu Glu Met
Lys Leu Met Glu
Lys Leu Pro Tyr
Lys Leu Tyr Pro
Lys Met Glu Ile
Lys Met Glu Leu
Lys Met Ile Glu
Lys Met Lys Asn
Lys Met Leu Glu
Lys Met Asn Lys
Lys Asn Lys Met
Lys Asn Met Lys
Lys Pro Glu Phe
Lys Pro Phe Glu
Lys Pro Ile Tyr
Lys Pro Leu Tyr
Lys Pro Tyr Ile
Lys Pro Tyr Leu
Lys Val His His
Lys Tyr Ile Pro
Lys Tyr Leu Pro
Lys Tyr Pro Ile
Lys Tyr Pro Leu
Leu Glu Lys Met
Leu Glu Met Lys
Leu Phe Ile Gln
Leu Phe Leu Gln
Leu Phe Gln Ile
Leu Phe Gln Leu
Leu Ile Phe Gln
Leu Ile Gln Phe
Leu Lys Glu Met
Leu Lys Met Glu
Leu Lys Pro Tyr
Leu Lys Tyr Pro
Leu Leu Phe Gln
Leu Leu Gln Phe
Leu Met Glu Lys
Leu Met Lys Glu
Leu Met Arg Thr
Leu Met Thr Arg
Leu Pro Lys Tyr
Leu Pro Gln Tyr
Leu Pro Tyr Lys
Leu Pro Tyr Gln
Leu Gln Phe Ile
Leu Gln Phe Leu
Leu Gln Ile Phe
Leu Gln Leu Phe
Leu Gln Pro Tyr
Leu Gln Tyr Pro
Leu Arg Met Thr
Leu Arg Thr Met
Leu Thr Met Arg
Leu Thr Arg Met
Leu Thr Thr Trp
Leu Thr Trp Thr
Leu Trp Thr Thr
Leu Tyr Lys Pro
Leu Tyr Pro Lys
Leu Tyr Pro Gln
Leu Tyr Gln Pro
Met Glu Ile Lys
Met Glu Lys Ile
Met Glu Lys Leu
Met Glu Leu Lys
Met Ile Glu Lys
Met Ile Lys Glu
Met Ile Arg Thr
Met Ile Thr Arg
Met Lys Glu Ile
Met Lys Glu Leu
Met Lys Ile Glu
Met Lys Lys Asn
Met Lys Leu Glu
Met Lys Asn Lys
Met Leu Glu Lys
Met Leu Lys Glu
Met Leu Arg Thr
Met Leu Thr Arg
Met Asn Lys Lys
Met Arg Ile Thr
Met Arg Leu Thr
Met Arg Thr Ile
Met Arg Thr Leu
Met Thr Ile Arg
Met Thr Leu Arg
Met Thr Arg Ile
Met Thr Arg Leu
Asn Lys Lys Met
Asn Lys Met Lys
Asn Met Lys Lys
Pro Glu Phe Lys
Pro Glu Lys Phe
Pro Phe Glu Lys
Pro Phe Lys Glu
Pro Phe Arg Thr
Pro Phe Thr Arg
Pro Ile Lys Tyr
Pro Ile Gln Tyr
Pro Ile Tyr Lys
Pro Ile Tyr Gln
Pro Lys Glu Phe
Pro Lys Phe Glu
Pro Lys Ile Tyr
Pro Lys Leu Tyr
Pro Lys Tyr Ile
Pro Lys Tyr Leu
Pro Leu Lys Tyr
Pro Leu Gln Tyr
Pro Leu Tyr Lys
Pro Leu Tyr Gln
Pro Gln Ile Tyr
Pro Gln Leu Tyr
Pro Gln Tyr Ile
Pro Gln Tyr Leu
Pro Arg Phe Thr
Pro Arg Thr Phe
Pro Thr Phe Arg
Pro Thr Arg Phe
Pro Tyr Ile Lys
Pro Tyr Ile Gln
Pro Tyr Lys Ile
Pro Tyr Lys Leu
Pro Tyr Leu Lys
Pro Tyr Leu Gln
Pro Tyr Gln Ile
Pro Tyr Gln Leu
Gln Phe Ile Ile
Gln Phe Ile Leu
Gln Phe Leu Ile
Gln Phe Leu Leu
Gln Ile Phe Ile
Gln Ile Phe Leu
Gln Ile Ile Phe
Gln Ile Leu Phe
Gln Ile Pro Tyr
Gln Ile Tyr Pro
Gln Leu Phe Ile
Gln Leu Phe Leu
Gln Leu Ile Phe
Gln Leu Leu Phe
Gln Leu Pro Tyr
Gln Leu Tyr Pro
Gln Pro Ile Tyr
Gln Pro Leu Tyr
Gln Pro Tyr Ile
Gln Pro Tyr Leu
Gln Tyr Ile Pro
Gln Tyr Leu Pro
Gln Tyr Pro Ile
Gln Tyr Pro Leu
Arg Ala His His
Arg Phe Pro Thr
Arg Phe Thr Pro
Arg Phe Val Val
Arg His Ala His
Arg His His Ala
Arg Ile Met Thr
Arg Ile Thr Met
Arg Leu Met Thr
Arg Leu Thr Met
Arg Met Ile Thr
Arg Met Leu Thr
Arg Met Thr Ile
Arg Met Thr Leu
Arg Pro Phe Thr
Arg Pro Thr Phe
Arg Thr Phe Pro
Arg Thr Ile Met
Arg Thr Leu Met
Arg Thr Met Ile
Arg Thr Met Leu
Arg Thr Pro Phe
Arg Val Phe Val
Arg Val Val Phe
Thr Phe Pro Arg
Thr Phe Arg Pro
Thr Ile Met Arg
Thr Ile Arg Met
Thr Ile Thr Trp
Thr Ile Trp Thr
Thr Leu Met Arg
Thr Leu Arg Met
Thr Leu Thr Trp
Thr Leu Trp Thr
Thr Met Ile Arg
Thr Met Leu Arg
Thr Met Arg Ile
Thr Met Arg Leu
Thr Pro Phe Arg
Thr Pro Arg Phe
Thr Arg Phe Pro
Thr Arg Ile Met
Thr Arg Leu Met
Thr Arg Met Ile
Thr Arg Met Leu
Thr Arg Pro Phe
Thr Thr Ile Trp
Thr Thr Leu Trp
Thr Thr Trp Ile
Thr Thr Trp Leu
Thr Trp Ile Thr
Thr Trp Leu Thr
Thr Trp Thr Ile
Thr Trp Thr Leu
Val Phe Arg Val
Val Phe Val Arg
Val His His Lys
Val His Lys His
Val Lys His His
Val Arg Phe Val
Val Arg Val Phe
Val Val Phe Arg
Val Val Arg Phe
Trp Ile Thr Thr
Trp Leu Thr Thr
Trp Thr Ile Thr
Trp Thr Leu Thr
Trp Thr Thr Ile
Trp Thr Thr Leu
Tyr Ile Lys Pro
Tyr Ile Pro Lys
Tyr Ile Pro Gln
Tyr Ile Gln Pro
Tyr Lys Ile Pro
Tyr Lys Leu Pro
Tyr Lys Pro Ile
Tyr Lys Pro Leu
Tyr Leu Lys Pro
Tyr Leu Pro Lys
Tyr Leu Pro Gln
Tyr Leu Gln Pro
Tyr Pro Ile Lys
Tyr Pro Ile Gln
Tyr Pro Lys Ile
Tyr Pro Lys Leu
Tyr Pro Leu Lys
Tyr Pro Leu Gln
Tyr Pro Gln Ile
Tyr Pro Gln Leu
Tyr Gln Ile Pro
Tyr Gln Leu Pro
Tyr Gln Pro Ile
Tyr Gln Pro Leu
PC(18:2/0:0)
18:2 LYSO-PC
Linoleoyllysolecithin
Vignatic acid B
ibha#22
A 4-O-(1H-indol-3-ylcarbonyl)ascaroside that is icas#22 in which the pro-R hydrogen beta to the carboxy group is replaced by a hydroxy group. It is a metabolite of the nematode Caenorhabditis elegans.
ibho#22
An omega-hydroxy fatty acid ascaroside that is bhos#22 in which the hydroxy group at position 4 of the ascarylopyranose moiety has been has been converted to the corresponding 1H-indole-3-carboxylate ester. It is a metabolite of the nematode Caenorhabditis elegans.
N-Boc-N-Cbz-L-2,3-diaminopropionic acid dicyclohexylamine salt
Bomedemstat
C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor
(3R)-13-[[3,6-Dideoxy-4-O-(1H-indol-3-ylcarbonyl)-alpha-L-arabino-hexopyranosyl]oxy]-3-hydroxytridecanoic acid
(3R,12R)-12-[[3,6-Dideoxy-4-O-(1H-indol-3-ylcarbonyl)-alpha-L-arabino-hexopyranosyl]oxy]-3-hydroxytridecanoic acid
1-linoleoyl-GPC (18:2)
LysoPC(18:2(9Z,12Z)) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(18:2(9Z,12Z)), in particular, consists of one chain of linoleic acid at the C-1 position. The linoleic acid moiety is derived from seed oils. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins. Lysopc(18:2(9z,12z)), also known as lysophosphatidylcholine(18:2/0:0) or lpc(18:2n6/0:0), is a member of the class of compounds known as 1-acyl-sn-glycero-3-phosphocholines. 1-acyl-sn-glycero-3-phosphocholines are glycerophosphocholines in which the glycerol is esterified with a fatty acid at O-1 position, and linked at position 3 to a phosphocholine. Thus, lysopc(18:2(9z,12z)) is considered to be a glycerophosphocholine lipid molecule. Lysopc(18:2(9z,12z)) is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Lysopc(18:2(9z,12z)) can be found in a number of food items such as japanese persimmon, jicama, rubus (blackberry, raspberry), and chinese bayberry, which makes lysopc(18:2(9z,12z)) a potential biomarker for the consumption of these food products. Lysopc(18:2(9z,12z)) can be found primarily in blood, feces, and urine, as well as throughout all human tissues. Moreover, lysopc(18:2(9z,12z)) is found to be associated with schizophrenia.
(2-Hydroxy-3-octadeca-9,12-dienoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(1R,2S,13S,16S,25S,27S)-1,2,24,24-tetramethyl-22-(2-methylprop-1-enyl)-18,21,23,26-tetraoxa-4-azaoctacyclo[14.13.0.02,13.03,11.05,10.017,19.017,27.020,25]nonacosa-3(11),5,7,9-tetraen-16-ol
[(3R,4S)-1,1-Difluoro-3-(hexadecanoylamino)-4-hydroxy-4-phenylbutyl]phosphonic acid
(4Z,7R,8E,10Z,12E,14E,17S,19Z)-7,16,17-Trihydroxydocosa-4,8,10,12,14,19-hexaenoylcarnitine
(4Z,7S,9E,11E,13Z,15E,17S,19Z)-7,8,17-Trihydroxydocosa-4,9,11,13,15,19-hexaenoylcarnitine
(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine
(4Z,7Z,10S,11E)-10-Hydroxy-12-[(1S,2R,3R)-3-hydroxy-5-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]dodeca-4,7,11-trienoylcarnitine
3-[(1S,2R,5S)-5-Hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-3-oxocyclopentyl]propanoylcarnitine
3-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z,8Z,11Z)-3-hydroxytetradeca-1,5,8,11-tetraen-1-yl]-5-oxocyclopentyl]propanoylcarnitine
(4Z)-6-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z,8Z)-3-hydroxyundeca-1,5,8-trien-1-yl]-5-oxocyclopentyl]hex-4-enoylcarnitine
(4Z,7Z)-9-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]nona-4,7-dienoylcarnitine
(4Z,7Z,10Z)-12-[(1S,2R,3R)-3-Hydroxy-2-[(1E,3S)-3-hydroxypent-1-en-1-yl]-5-oxocyclopentyl]dodeca-4,7,10-trienoylcarnitine
(4S,5E)-4-Hydroxy-6-[(1S,2R,5S)-5-hydroxy-3-oxo-2-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]cyclopentyl]hex-5-enoylcarnitine
(4Z,7S,8E)-7-Hydroxy-9-[(1S,2R,5S)-5-hydroxy-2-[(2Z,5Z)-octa-2,5-dien-1-yl]-3-oxocyclopentyl]nona-4,8-dienoylcarnitine
N-[[(4R,5S)-8-[3-(dimethylamino)prop-1-ynyl]-2-[(2S)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-N-methylcyclohexanecarboxamide
N-[[(4S,5S)-8-[3-(dimethylamino)prop-1-ynyl]-2-[(2S)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-N-methylcyclohexanecarboxamide
N-[[(4S,5R)-8-[3-(dimethylamino)prop-1-ynyl]-2-[(2S)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-N-methylcyclohexanecarboxamide
N-[[(4S,5S)-8-[3-(dimethylamino)prop-1-ynyl]-2-[(2R)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-N-methylcyclohexanecarboxamide
N-[[(4R,5R)-8-[3-(dimethylamino)prop-1-ynyl]-2-[(2S)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-N-methylcyclohexanecarboxamide
N-[[(4R,5S)-8-[3-(dimethylamino)prop-1-ynyl]-2-[(2R)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-N-methylcyclohexanecarboxamide
N-[[(4S,5R)-8-[3-(dimethylamino)prop-1-ynyl]-2-[(2R)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-N-methylcyclohexanecarboxamide
N-[[(4R,5R)-8-[3-(dimethylamino)prop-1-ynyl]-2-[(2R)-1-hydroxypropan-2-yl]-4-methyl-1,1-dioxo-4,5-dihydro-3H-6,1$l^{6},2-benzoxathiazocin-5-yl]methyl]-N-methylcyclohexanecarboxamide
N-[[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-(3-phenylprop-1-ynyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-(3-phenylprop-1-ynyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-(3-phenylprop-1-ynyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-(3-phenylprop-1-ynyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-(3-phenylprop-1-ynyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-(3-phenylprop-1-ynyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-(3-phenylprop-1-ynyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
N-[[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-8-(3-phenylprop-1-ynyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methyl-4-oxanecarboxamide
(3S)-1-[2-[2,2,2-tris(4-methoxyphenyl)ethoxy]ethyl]-3-piperidinecarboxylic acid
[2-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (11Z,14Z)-henicosa-11,14-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] acetate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] butanoate
2-[2,3-Di(trimethylsilyloxy)butoxy]-N-[2-(diethylamino)ethyl]-4-quinolinecarboxamide
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
[1-acetyloxy-3-[2-aminoethoxy(hydroxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-butanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
PE(20:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PC(17:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
KRAS inhibitor-10
KRAS inhibitor-10 (compound 11) selectively and effectively inhibit RAS proteins, and particularly KRAS proteins. KRAS inhibitor-10 is an orally active anti-cancer agent and can be used for cancer research, such as pancreatic cancer, breast cancer, multiple myeloma, leukemia and lung cancer. KRAS inhibitor-10 is a?tetrahydroisoquinoline compound (compound 11) extracted from patent WO2021005165 A1[1].
KT185
KT185 is an orally-bioavailable, brain-penetrant and selective ABHD6 inhibitor, with an IC50 0.21 nM in Neuro2A cells[1].