Exact Mass: 510.4634
Exact Mass Matches: 510.4634
Found 169 metabolites which its exact mass value is equals to given mass value 510.4634
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Gallamine Triethiodide
A synthetic nondepolarizing blocking drug. The actions of gallamine triethiodide are similar to those of tubocurarine, but this agent blocks the cardiac vagus and may cause sinus tachycardia and, occasionally, hypertension and increased cardiac output. It should be used cautiously in patients at risk from increased heart rate but may be preferred for patients with bradycardia. (From AMA Drug Evaluations Annual, 1992, p198)
Nb-Lignoceroyltryptamine
Nb-Lignoceroyltryptamine is found in alcoholic beverages. Nb-Lignoceroyltryptamine is an alkaloid from seeds of Annona reticulata (custard apple) and Rollina mucosa (biriba). Alkaloid from seeds of Annona reticulata (custard apple) and Rollina mucosa (biriba). Nb-Lignoceroyltryptamine is found in alcoholic beverages and fruits.
Propylene glycol mono- and diesters of fats and fatty acids
Propylene glycol mono- and diesters of fats and fatty acids is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive .
FAHFA(16:0/9-O-16:0)
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/9-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 9-hydroxyhexadecanoic acid. It is alternatively named 9-PAHPA since it is the 9-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.
FAHFA(16:0/5-O-16:0)
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/5-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 5-hydroxyhexadecanoic acid. It is alternatively named 5-PAHPA since it is the 5-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.
FAHFA(16:0/7-O-16:0)
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/7-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 7-hydroxyhexadecanoic acid. It is alternatively named 7-PAHPA since it is the 7-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.
FAHFA(16:0/8-O-16:0)
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/8-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 8-hydroxyhexadecanoic acid. It is alternatively named 8-PAHPA since it is the 8-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.
FAHFA(16:0/10-O-16:0)
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/10-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 10-hydroxyhexadecanoic acid. It is alternatively named 10-PAHPA since it is the 10-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.
FAHFA(16:0/11-O-16:0)
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/11-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 11-hydroxyhexadecanoic acid. It is alternatively named 11-PAHPA since it is the 11-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.
FAHFA(16:0/12-O-16:0)
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/12-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 12-hydroxyhexadecanoic acid. It is alternatively named 12-PAHPA since it is the 12-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.
FAHFA(16:0/13-O-16:0)
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/13-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 13-hydroxyhexadecanoic acid. It is alternatively named 13-PAHPA since it is the 13-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.
FAHFA(16:0/6-O-16:0)
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/6-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 6-hydroxyhexadecanoic acid. It is alternatively named 6-PAHPA since it is the 6-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.
Flaxedil
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
[1-hydroxy-3-[(Z)-icos-11-enoxy]propan-2-yl] nonanoate
[1-[(Z)-hexacos-15-enoxy]-3-hydroxypropan-2-yl] propanoate
[1-hydroxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] pentanoate
[1-[(Z)-docos-13-enoxy]-3-hydroxypropan-2-yl] heptanoate
(1-hydroxy-3-octoxypropan-2-yl) (Z)-henicos-11-enoate
[1-[(Z)-henicos-11-enoxy]-3-hydroxypropan-2-yl] octanoate
(1-hydroxy-3-nonoxypropan-2-yl) (Z)-icos-11-enoate
(1-decoxy-3-hydroxypropan-2-yl) (Z)-nonadec-9-enoate
[1-hydroxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] decanoate
(1-hydroxy-3-tetradecoxypropan-2-yl) (Z)-pentadec-9-enoate
(1-hexadecoxy-3-hydroxypropan-2-yl) (Z)-tridec-9-enoate
[1-hydroxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] undecanoate
(1-hydroxy-3-tridecoxypropan-2-yl) (Z)-hexadec-9-enoate
[1-[(Z)-hexadec-9-enoxy]-3-hydroxypropan-2-yl] tridecanoate
(1-hydroxy-3-pentadecoxypropan-2-yl) (Z)-tetradec-9-enoate
[1-[(Z)-heptadec-9-enoxy]-3-hydroxypropan-2-yl] dodecanoate
(1-dodecoxy-3-hydroxypropan-2-yl) (Z)-heptadec-9-enoate
[1-hydroxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] hexadecanoate
[1-hydroxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] pentadecanoate
[1-hydroxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] tetradecanoate
(1-hydroxy-3-undecoxypropan-2-yl) (Z)-octadec-9-enoate
OAHFA(32:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved