Exact Mass: 510.4548898

Exact Mass Matches: 510.4548898

Found 174 metabolites which its exact mass value is equals to given mass value 510.4548898, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Gallamine Triethiodide

(2-{2,3-bis[2-(triethylazaniumyl)ethoxy]phenoxy}ethyl)triethylazanium

C30H60N3O3 (510.463443)


A synthetic nondepolarizing blocking drug. The actions of gallamine triethiodide are similar to those of tubocurarine, but this agent blocks the cardiac vagus and may cause sinus tachycardia and, occasionally, hypertension and increased cardiac output. It should be used cautiously in patients at risk from increased heart rate but may be preferred for patients with bradycardia. (From AMA Drug Evaluations Annual, 1992, p198)

   

Nb-Lignoceroyltryptamine

N-[2-(1H-indol-3-yl)Ethyl]tetracosanimidate

C34H58N2O (510.4548898)


Nb-Lignoceroyltryptamine is found in alcoholic beverages. Nb-Lignoceroyltryptamine is an alkaloid from seeds of Annona reticulata (custard apple) and Rollina mucosa (biriba). Alkaloid from seeds of Annona reticulata (custard apple) and Rollina mucosa (biriba). Nb-Lignoceroyltryptamine is found in alcoholic beverages and fruits.

   

Nervonyl carnitine

Nervonyl carnitine

C31H60NO4 (510.45221000000004)


Nervonyl carnitine is an acylcarnitine. Numerous disorders have been described that lead to disturbances in energy production and in intermediary metabolism in the organism which are characterized by the production and excretion of unusual acylcarnitines. A mutation in the gene coding for carnitine-acylcarnitine translocase or the OCTN2 transporter aetiologically causes a carnitine deficiency that results in poor intestinal absorption of dietary L-carnitine, its impaired reabsorption by the kidney and, consequently, in increased urinary loss of L-carnitine. Determination of the qualitative pattern of acylcarnitines can be of diagnostic and therapeutic importance. The betaine structure of carnitine requires special analytical procedures for recording. The ionic nature of L-carnitine causes a high water solubility which decreases with increasing chain length of the ester group in the acylcarnitines. Therefore, the distribution of L-carnitine and acylcarnitines in various organs is defined by their function and their physico-chemical properties as well. High performance liquid chromatography (HPLC) permits screening for free and total carnitine, as well as complete quantitative acylcarnitine determination, including the long-chain acylcarnitine profile. (PMID: 17508264, Monatshefte fuer Chemie (2005), 136(8), 1279-1291., Int J Mass Spectrom. 1999;188:39-52.).

   

Propylene glycol mono- and diesters of fats and fatty acids

Propylene glycol mono- and diesters of fats and fatty acids

C32H62O4 (510.4647852)


Propylene glycol mono- and diesters of fats and fatty acids is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive .

   

FAHFA(16:0/9-O-16:0)

9-[(1-oxohexadecyl)oxy]-hexadecanoic acid

C32H62O4 (510.4647852)


Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/9-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 9-hydroxyhexadecanoic acid. It is alternatively named 9-PAHPA since it is the 9-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.

   

FAHFA(16:0/5-O-16:0)

5-[(1-oxohexadecyl)oxy]-hexadecanoic acid

C32H62O4 (510.4647852)


Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/5-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 5-hydroxyhexadecanoic acid. It is alternatively named 5-PAHPA since it is the 5-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.

   

FAHFA(16:0/7-O-16:0)

7-[(1-oxohexadecyl)oxy]-hexadecanoic acid

C32H62O4 (510.4647852)


Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/7-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 7-hydroxyhexadecanoic acid. It is alternatively named 7-PAHPA since it is the 7-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.

   

FAHFA(16:0/8-O-16:0)

8-[(1-oxohexadecyl)oxy]-hexadecanoic acid

C32H62O4 (510.4647852)


Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/8-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 8-hydroxyhexadecanoic acid. It is alternatively named 8-PAHPA since it is the 8-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.

   

FAHFA(16:0/10-O-16:0)

10-[(1-oxohexadecyl)oxy]-hexadecanoic acid

C32H62O4 (510.4647852)


Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/10-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 10-hydroxyhexadecanoic acid. It is alternatively named 10-PAHPA since it is the 10-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.

   

FAHFA(16:0/11-O-16:0)

11-[(1-oxohexadecyl)oxy]-hexadecanoic acid

C32H62O4 (510.4647852)


Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/11-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 11-hydroxyhexadecanoic acid. It is alternatively named 11-PAHPA since it is the 11-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.

   

FAHFA(16:0/12-O-16:0)

12-[(1-oxohexadecyl)oxy]-hexadecanoic acid

C32H62O4 (510.4647852)


Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/12-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 12-hydroxyhexadecanoic acid. It is alternatively named 12-PAHPA since it is the 12-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.

   

FAHFA(16:0/13-O-16:0)

13-[(1-oxohexadecyl)oxy]-hexadecanoic acid

C32H62O4 (510.4647852)


Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/13-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 13-hydroxyhexadecanoic acid. It is alternatively named 13-PAHPA since it is the 13-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.

   

FAHFA(16:0/6-O-16:0)

6-[(1-oxohexadecyl)oxy]-hexadecanoic acid

C32H62O4 (510.4647852)


Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids found in adipose tissue and serum that correlate with insulin sensitivity and are reduced in insulin-resistant humans. Structurally, they are characterized by a branched ester linkage between a fatty acid and a hydroxy-fatty acid. Different positions of the branched ester on the hydroxy fatty acid results in different isomers. FAHFA(16:0/6-O-16:0), in particular, is formed from the condensation of the carboxy group of palmitic acid with the hydroxy group of 6-hydroxyhexadecanoic acid. It is alternatively named 6-PAHPA since it is the 6-hydroxy isomer of the PAHPA (palmitic acid-hydroxypalmitic acid) family.

   
   

dimethyl 14-methylnonacosanedioate

dimethyl 14-methylnonacosanedioate

C32H62O4 (510.4647852)


   

Diabolic acid

15,16-dimethyltriacontanedioic acid

C32H62O4 (510.4647852)


   

Dimethyl triacontanedioate

Dimethyl triacontanedioate

C32H62O4 (510.4647852)


   
   

Propylene glycol, fatty acid esters

Propylene glycol mono- and diesters of fats and fatty acids

C32H62O4 (510.4647852)


   

tetracosanoic acid tryptamide

N-[2-(1H-indol-3-yl)ethyl]tetracosanamide

C34H58N2O (510.4548898)


   

5-PAHPA

5-hexadecanoyloxy-hexadecanoic acid

C32H62O4 (510.4647852)


   

7-PAHPA

7-hexadecanoyloxy-hexadecanoic acid

C32H62O4 (510.4647852)


   

8-PAHPA

8-hexadecanoyloxy-hexadecanoic acid

C32H62O4 (510.4647852)


   

9-PAHPA

9-hexadecanoyloxy-hexadecanoic acid

C32H62O4 (510.4647852)


   

10-PAHPA

10-hexadecanoyloxy-hexadecanoic acid

C32H62O4 (510.4647852)


   

11-PAHPA

11-hexadecanoyloxy-hexadecanoic acid

C32H62O4 (510.4647852)


   

12-PAHPA

12-hexadecanoyloxy-hexadecanoic acid

C32H62O4 (510.4647852)


   

13-PAHPA

13-hexadecanoyloxy-hexadecanoic acid

C32H62O4 (510.4647852)


   

FAHFA 32:0;O

13-tetradecanoyloxy-octadecanoic acid

C32H62O4 (510.4647852)


   

Ditridecyl adipate

Ditridecyl adipate

C32H62O4 (510.4647852)


   

bis(11-methyldodecyl) hexanedioate

bis(11-methyldodecyl) hexanedioate

C32H62O4 (510.4647852)


   

dotriacontanedioic acid

dotriacontanedioic acid

C32H62O4 (510.4647852)


   

Flaxedil

Flaxedil

C30H60N3O3+3 (510.463443)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

2-Hexadecanoyloxyhexadecanoic acid

2-Hexadecanoyloxyhexadecanoic acid

C32H62O4 (510.4647852)


   

9-Myristoyloxystearic acid

9-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

10-Myristoyloxystearic acid

10-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

12-Myristoyloxystearic acid

12-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

13-Myristoyloxystearic acid

13-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

[(2R)-3-carboxy-2-[(Z)-tetracos-15-enoyl]oxypropyl]-trimethylazanium

[(2R)-3-carboxy-2-[(Z)-tetracos-15-enoyl]oxypropyl]-trimethylazanium

C31H60NO4+ (510.45221000000004)


   

[3-carboxy-2-[(E)-tetracos-15-enoyl]oxypropyl]-trimethylazanium

[3-carboxy-2-[(E)-tetracos-15-enoyl]oxypropyl]-trimethylazanium

C31H60NO4+ (510.45221000000004)


   

[3-carboxy-2-[(E)-tetracos-11-enoyl]oxypropyl]-trimethylazanium

[3-carboxy-2-[(E)-tetracos-11-enoyl]oxypropyl]-trimethylazanium

C31H60NO4+ (510.45221000000004)


   

[1-hydroxy-3-[(Z)-icos-11-enoxy]propan-2-yl] nonanoate

[1-hydroxy-3-[(Z)-icos-11-enoxy]propan-2-yl] nonanoate

C32H62O4 (510.4647852)


   

[1-[(Z)-hexacos-15-enoxy]-3-hydroxypropan-2-yl] propanoate

[1-[(Z)-hexacos-15-enoxy]-3-hydroxypropan-2-yl] propanoate

C32H62O4 (510.4647852)


   

[1-hydroxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] pentanoate

[1-hydroxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] pentanoate

C32H62O4 (510.4647852)


   

[1-[(Z)-docos-13-enoxy]-3-hydroxypropan-2-yl] heptanoate

[1-[(Z)-docos-13-enoxy]-3-hydroxypropan-2-yl] heptanoate

C32H62O4 (510.4647852)


   

(1-hydroxy-3-octoxypropan-2-yl) (Z)-henicos-11-enoate

(1-hydroxy-3-octoxypropan-2-yl) (Z)-henicos-11-enoate

C32H62O4 (510.4647852)


   

[1-[(Z)-henicos-11-enoxy]-3-hydroxypropan-2-yl] octanoate

[1-[(Z)-henicos-11-enoxy]-3-hydroxypropan-2-yl] octanoate

C32H62O4 (510.4647852)


   

(1-hydroxy-3-nonoxypropan-2-yl) (Z)-icos-11-enoate

(1-hydroxy-3-nonoxypropan-2-yl) (Z)-icos-11-enoate

C32H62O4 (510.4647852)


   

(1-decoxy-3-hydroxypropan-2-yl) (Z)-nonadec-9-enoate

(1-decoxy-3-hydroxypropan-2-yl) (Z)-nonadec-9-enoate

C32H62O4 (510.4647852)


   

[1-hydroxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] decanoate

[1-hydroxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] decanoate

C32H62O4 (510.4647852)


   

(1-hydroxy-3-tetradecoxypropan-2-yl) (Z)-pentadec-9-enoate

(1-hydroxy-3-tetradecoxypropan-2-yl) (Z)-pentadec-9-enoate

C32H62O4 (510.4647852)


   

(1-hexadecoxy-3-hydroxypropan-2-yl) (Z)-tridec-9-enoate

(1-hexadecoxy-3-hydroxypropan-2-yl) (Z)-tridec-9-enoate

C32H62O4 (510.4647852)


   

[1-hydroxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] undecanoate

[1-hydroxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] undecanoate

C32H62O4 (510.4647852)


   

(1-hydroxy-3-tridecoxypropan-2-yl) (Z)-hexadec-9-enoate

(1-hydroxy-3-tridecoxypropan-2-yl) (Z)-hexadec-9-enoate

C32H62O4 (510.4647852)


   

[1-[(Z)-hexadec-9-enoxy]-3-hydroxypropan-2-yl] tridecanoate

[1-[(Z)-hexadec-9-enoxy]-3-hydroxypropan-2-yl] tridecanoate

C32H62O4 (510.4647852)


   

(1-hydroxy-3-pentadecoxypropan-2-yl) (Z)-tetradec-9-enoate

(1-hydroxy-3-pentadecoxypropan-2-yl) (Z)-tetradec-9-enoate

C32H62O4 (510.4647852)


   

[1-[(Z)-heptadec-9-enoxy]-3-hydroxypropan-2-yl] dodecanoate

[1-[(Z)-heptadec-9-enoxy]-3-hydroxypropan-2-yl] dodecanoate

C32H62O4 (510.4647852)


   

(1-dodecoxy-3-hydroxypropan-2-yl) (Z)-heptadec-9-enoate

(1-dodecoxy-3-hydroxypropan-2-yl) (Z)-heptadec-9-enoate

C32H62O4 (510.4647852)


   

[1-hydroxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] hexadecanoate

[1-hydroxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] hexadecanoate

C32H62O4 (510.4647852)


   

[1-hydroxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] pentadecanoate

[1-hydroxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] pentadecanoate

C32H62O4 (510.4647852)


   

[1-hydroxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] tetradecanoate

[1-hydroxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] tetradecanoate

C32H62O4 (510.4647852)


   

(1-hydroxy-3-undecoxypropan-2-yl) (Z)-octadec-9-enoate

(1-hydroxy-3-undecoxypropan-2-yl) (Z)-octadec-9-enoate

C32H62O4 (510.4647852)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-Myristoyloxystearic acid

2-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

3-Myristoyloxystearic acid

3-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

4-Myristoyloxystearic acid

4-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

5-Myristoyloxystearic acid

5-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

6-Myristoyloxystearic acid

6-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

7-Myristoyloxystearic acid

7-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

8-Myristoyloxystearic acid

8-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

11-Myristoyloxystearic acid

11-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

14-Myristoyloxystearic acid

14-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

15-Myristoyloxystearic acid

15-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

16-Myristoyloxystearic acid

16-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   

17-Myristoyloxystearic acid

17-Myristoyloxystearic acid

C32H62O4 (510.4647852)


   
   
   
   
   
   
   

13-hexadecanoyloxy-hexadecanoic acid

13-hexadecanoyloxy-hexadecanoic acid

C32H62O4 (510.4647852)


   

OAHFA(32:0)

OAHFA(16:0_16:0)

C32H62O4 (510.4647852)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MG(29:1)

MG(29:1)

C32H62O4 (510.4647852)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   

FAHFA 10:0/2O-22:0

FAHFA 10:0/2O-22:0

C32H62O4 (510.4647852)


   

FAHFA 10:0/O-22:0

FAHFA 10:0/O-22:0

C32H62O4 (510.4647852)


   

FAHFA 11:0/O-21:0

FAHFA 11:0/O-21:0

C32H62O4 (510.4647852)


   

FAHFA 12:0/O-20:0

FAHFA 12:0/O-20:0

C32H62O4 (510.4647852)


   

FAHFA 13:0/O-19:0

FAHFA 13:0/O-19:0

C32H62O4 (510.4647852)


   

FAHFA 14:0/12O-18:0

FAHFA 14:0/12O-18:0

C32H62O4 (510.4647852)


   

FAHFA 14:0/O-18:0

FAHFA 14:0/O-18:0

C32H62O4 (510.4647852)


   

FAHFA 15:0/O-17:0

FAHFA 15:0/O-17:0

C32H62O4 (510.4647852)


   

FAHFA 16:0/3O-16:0

FAHFA 16:0/3O-16:0

C32H62O4 (510.4647852)


   

FAHFA 16:0/O-16:0

FAHFA 16:0/O-16:0

C32H62O4 (510.4647852)


   

FAHFA 17:0/15O-15:0

FAHFA 17:0/15O-15:0

C32H62O4 (510.4647852)


   

FAHFA 17:0/O-15:0

FAHFA 17:0/O-15:0

C32H62O4 (510.4647852)


   

FAHFA 18:0/2O-14:0

FAHFA 18:0/2O-14:0

C32H62O4 (510.4647852)


   

FAHFA 18:0/O-14:0

FAHFA 18:0/O-14:0

C32H62O4 (510.4647852)


   

FAHFA 19:0/O-13:0

FAHFA 19:0/O-13:0

C32H62O4 (510.4647852)


   

FAHFA 20:0/3O-12:0

FAHFA 20:0/3O-12:0

C32H62O4 (510.4647852)


   

FAHFA 20:0/O-12:0

FAHFA 20:0/O-12:0

C32H62O4 (510.4647852)


   

FAHFA 21:0/O-11:0

FAHFA 21:0/O-11:0

C32H62O4 (510.4647852)


   

FAHFA 22:0/O-10:0

FAHFA 22:0/O-10:0

C32H62O4 (510.4647852)


   
   
   
   
   
   
   
   
   
   
   
   
   

n-[2-(indol-1-yl)ethyl]tetracosanimidic acid

n-[2-(indol-1-yl)ethyl]tetracosanimidic acid

C34H58N2O (510.4548898)


   

n-[2-(1h-indol-3-yl)ethyl]tetracosanimidic acid

n-[2-(1h-indol-3-yl)ethyl]tetracosanimidic acid

C34H58N2O (510.4548898)