Exact Mass: 457.3528954
Exact Mass Matches: 457.3528954
Found 93 metabolites which its exact mass value is equals to given mass value 457.3528954
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
O-(17-Carboxyheptadecanoyl)carnitine
O-(17-Carboxyheptadecanoyl)carnitine is an acylcarnitine. More specifically, it is an octadecanedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. O-(17-Carboxyheptadecanoyl)carnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine O-(17-Carboxyheptadecanoyl)carnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
O‐[(4Z)‐Decenoyl]carnitine
O‚Äê[(4Z)‚Äêdecenoyl]carnitine is an acylcarnitine. More specifically, it is an 3-[(4Z)-dec-4-enoyloxy]-4-(trimethylazaniumyl)butanoate ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. O‚Äê[(4Z)‚Äêdecenoyl]carnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine O‚Äê[(4Z)‚Äêdecenoyl]carnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. In particular O‚Äê[(4Z)‚Äêdecenoyl]carnitine is elevated in the blood or plasma of individuals with overweight (PMID: 30322392). It is also decreased in the blood or plasma of individuals with schizophrenia (PMID: 31161852) and familial mediterranean fever (PMID: 29900937). Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
9-HydroxyNonadecanoylcarnitine
C26H51NO5 (457.37670360000004)
9-HydroxyNonadecanoylcarnitine is an acylcarnitine. More specifically, it is an 9-hydroxynonadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-HydroxyNonadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 9-HydroxyNonadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
11-HydroxyNonadecanoylcarnitine
C26H51NO5 (457.37670360000004)
11-HydroxyNonadecanoylcarnitine is an acylcarnitine. More specifically, it is an 11-hydroxynonadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 11-HydroxyNonadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 11-HydroxyNonadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
8-[(2R,3S)-3-(8-Hydroxyoctyl)oxiran-2-yl]octanoylcarnitine
8-[(2R,3S)-3-(8-hydroxyoctyl)oxiran-2-yl]octanoylcarnitine is an acylcarnitine. More specifically, it is an 8-[(2R,3S)-3-(8-hydroxyoctyl)oxiran-2-yl]octanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 8-[(2R,3S)-3-(8-hydroxyoctyl)oxiran-2-yl]octanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 8-[(2R,3S)-3-(8-hydroxyoctyl)oxiran-2-yl]octanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(E)-N-(1,3,4,5-tetrahydroxyhexadecan-2-yl)dec-4-enamide
C26H51NO5 (457.37670360000004)
(4E)-3,6-dihydroxy-2-[(2-hydroxydodecanoyl)amino]undec-4-en-1-yl acetate|phlomisamide
Ile Lys Val Val
C22H43N5O5 (457.32640280000004)
Ile Val Lys Val
C22H43N5O5 (457.32640280000004)
Ile Val Val Lys
C22H43N5O5 (457.32640280000004)
Lys Ile Val Val
C22H43N5O5 (457.32640280000004)
Lys Leu Val Val
C22H43N5O5 (457.32640280000004)
Lys Val Ile Val
C22H43N5O5 (457.32640280000004)
Lys Val Leu Val
C22H43N5O5 (457.32640280000004)
Lys Val Val Ile
C22H43N5O5 (457.32640280000004)
Lys Val Val Leu
C22H43N5O5 (457.32640280000004)
Leu Lys Val Val
C22H43N5O5 (457.32640280000004)
Leu Val Lys Val
C22H43N5O5 (457.32640280000004)
Leu Val Val Lys
C22H43N5O5 (457.32640280000004)
Val Ile Lys Val
C22H43N5O5 (457.32640280000004)
Val Ile Val Lys
C22H43N5O5 (457.32640280000004)
Val Lys Ile Val
C22H43N5O5 (457.32640280000004)
Val Lys Leu Val
C22H43N5O5 (457.32640280000004)
Val Lys Val Ile
C22H43N5O5 (457.32640280000004)
Val Lys Val Leu
C22H43N5O5 (457.32640280000004)
Val Leu Lys Val
C22H43N5O5 (457.32640280000004)
Val Leu Val Lys
C22H43N5O5 (457.32640280000004)
Val Val Ile Lys
C22H43N5O5 (457.32640280000004)
Val Val Lys Ile
C22H43N5O5 (457.32640280000004)
Val Val Lys Leu
C22H43N5O5 (457.32640280000004)
Val Val Leu Lys
C22H43N5O5 (457.32640280000004)
3-O-Aminopropyl-25-hydroxyvitamin D3
CAR 18:1;O2
decyl hydrogen sulphate, compound with 1,1,1-nitrilotripropan-2-ol
N-(1-Cyclohexylethyl)-N-(1-phenylethyl)dodecahydrodibenzo[d,f][1, 3,2]dioxaphosphepin-6-amine
3-O-(2-Aminoethyl)-25-hydroxyvitamin D3
D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols
Octadecanedioic Acid Mono-L-carnitine Ester Chloride
(3beta,9beta)-4alpha-demethyl-4alpha-carboxy-9,19-cyclolanost-3-ol
8-[(2R,3S)-3-(8-Hydroxyoctyl)oxiran-2-yl]octanoylcarnitine
3-[3-[(E)-dec-4-enoyl]oxy-4-(trimethylazaniumyl)butanoyl]oxy-4-(trimethylazaniumyl)butanoate
(12Z,15Z,18Z,21Z,24Z)-2-hydroxytriacontapentaenoate
A hydroxy fatty acid anion that is the conjugate base of (12Z,15Z,18Z,21Z,24Z)-2-hydroxytriacontapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
20-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]icosanoate
19-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-3-oxononadecanoate
(19R)-19-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxyicosanoate
(18R)-18-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-3-oxononadecanoate
(5Z,8Z,11Z,14Z,17Z)-N-[(E)-1,3-dihydroxynon-4-en-2-yl]icosa-5,8,11,14,17-pentaenamide
(3Z,6Z,9Z,12Z,15Z)-N-[(E)-1,3-dihydroxyundec-4-en-2-yl]octadeca-3,6,9,12,15-pentaenamide
(4Z,7Z,10Z,13Z)-N-[(4E,8E)-1,3-dihydroxytrideca-4,8-dien-2-yl]hexadeca-4,7,10,13-tetraenamide
O-(17-carboxyheptadecanoyl)carnitine
An O-acylcarnitine having 17-carboxyheptadecanoyl as the acyl substituent.
oscr#36(1-)
A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#36, obtained by deprotonation of the carboxy group; major species at pH 7.3.
3-(3-carbamimidamidopropyl)-5-(2-{[(2e,7e)-1-hydroxy-4,8,12-trimethyltrideca-2,7,11-trien-1-ylidene]amino}ethyl)-1-methylimidazol-1-ium
[C26H45N6O]+ (457.36546599999997)
24-hydroxyiminocycloart-3-ol
{"Ingredient_id": "HBIN004411","Ingredient_name": "24-hydroxyiminocycloart-3-ol","Alias": "NA","Ingredient_formula": "C30H51NO2","Ingredient_Smile": "CC(C)C(=NO)CCC(C)C1CCC2(C1(CCC34C2CCC5C3(C4)CCC(C5(C)C)O)C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15859","TCMID_id": "10228","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
(1r,2s,6s,9s,10s,11r,12s,14s,15s,20s,23r,24s)-10,12-dihydroxy-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacos-17-en-20-yl formate
C28H43NO4 (457.31919180000006)
n-[1-(acetyloxy)-3,6-dihydroxyundec-4-en-2-yl]-2-hydroxydodecanimidic acid
2-{[(13z)-1-hydroxydocos-13-en-1-ylidene]amino}benzoic acid
2-(10-hydroxy-3,5,7,9,11,13-hexamethyltetradeca-2,5,7,11-tetraen-1-yl)-5,6-dimethoxy-3-methylpyridin-4-ol
C28H43NO4 (457.31919180000006)
2,3-dimethoxy-6-(10-methoxy-3,7,9,11,13-pentamethyltetradeca-2,5,7,11-tetraen-1-yl)-5-methylpyridin-4-ol
C28H43NO4 (457.31919180000006)
2,3-dimethoxy-6-[(2e,5e,7e,9s,10s,11e)-10-methoxy-3,7,9,11,13-pentamethyltetradeca-2,5,7,11-tetraen-1-yl]-5-methylpyridin-4-ol
C28H43NO4 (457.31919180000006)
(2r)-n-[(2r,3s,4e,6r)-1-(acetyloxy)-3,6-dihydroxyundec-4-en-2-yl]-2-hydroxydodecanimidic acid
2-[(2e,5e,7e,9s,10r,11e)-10-hydroxy-3,5,7,9,11,13-hexamethyltetradeca-2,5,7,11-tetraen-1-yl]-5,6-dimethoxy-3-methylpyridin-4-ol
C28H43NO4 (457.31919180000006)