Exact Mass: 451.262
Exact Mass Matches: 451.262
Found 122 metabolites which its exact mass value is equals to given mass value 451.262
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
LysoPE(16:1(9Z)/0:0)
LysoPE(16:1(9Z)/0:0) is a lysophosphatidylethanolamine or a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Some LPLs serve important signaling functions such as lysophosphatidic acid. Lysophosphatidylethanolamines (LPEs) can function as plant growth regulators with several diverse uses. (LPEs) are approved for outdoor agricultural use to accelerate ripening and improve the quality of fresh produce. They are also approved for indoor use to preserve stored crops and commercial cut flowers. As a breakdown product of phosphatidylethanolamine (PE), LPE is present in cells of all organisms. [HMDB] LysoPE(16:1(9Z)/0:0) is a lysophosphatidylethanolamine or a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Some LPLs serve important signaling functions such as lysophosphatidic acid. Lysophosphatidylethanolamines (LPEs) can function as plant growth regulators with several diverse uses. (LPEs) are approved for outdoor agricultural use to accelerate ripening and improve the quality of fresh produce. They are also approved for indoor use to preserve stored crops and commercial cut flowers. As a breakdown product of phosphatidylethanolamine (PE), LPE is present in cells of all organisms.
LysoPE(0:0/16:1(9Z))
LysoPE(0:0/16:1(9Z)) is a lysophosphatidylethanolamine or a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Some LPLs serve important signaling functions such as lysophosphatidic acid. Lysophosphatidylethanolamines (LPEs) can function as plant growth regulators with several diverse uses. (LPEs) are approved for outdoor agricultural use to accelerate ripening and improve the quality of fresh produce. They are also approved for indoor use to preserve stored crops and commercial cut flowers. As a breakdown product of phosphatidylethanolamine (PE), LPE is present in cells of all organisms. [HMDB] LysoPE(0:0/16:1(9Z)) is a lysophosphatidylethanolamine or a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Some LPLs serve important signaling functions such as lysophosphatidic acid. Lysophosphatidylethanolamines (LPEs) can function as plant growth regulators with several diverse uses. (LPEs) are approved for outdoor agricultural use to accelerate ripening and improve the quality of fresh produce. They are also approved for indoor use to preserve stored crops and commercial cut flowers. As a breakdown product of phosphatidylethanolamine (PE), LPE is present in cells of all organisms.
Dibekacin
Dihydroxylysinonorleucine
20-ethyl-1,14-dimethoxy-4-methyl-7,8-methylenedioxy-1alpha,5R,6beta,9S,14alpha,16beta-aconitane-6,10,16-triol|deacetylelasine
Ala His Lys Pro
Ala His Pro Lys
Ala Lys His Pro
Ala Lys Pro His
Ala Pro His Lys
Ala Pro Lys His
His Ala Lys Pro
His Ala Pro Lys
His Lys Ala Pro
His Lys Pro Ala
His Pro Ala Lys
His Pro Lys Ala
Lys Ala His Pro
Lys Ala Pro His
Lys His Ala Pro
Lys His Pro Ala
Lys Pro Ala His
Lys Pro His Ala
Pro Ala His Lys
Pro Ala Lys His
Pro His Ala Lys
Pro His Lys Ala
Pro Lys Ala His
Pro Lys His Ala
Platelet-activating factor
dibekacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials A kanamycin that is kanamycin B lacking the 3- and 4-hydroxy groups on the 2,6-diaminosugar ring. S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic
2-(butan-2-ylamino)-N-[4-[5-[[2-(butan-2-ylamino)acetyl]amino]-1,3-benzoxazol-2-yl]phenyl]acetamide
[(3S)-3,4-di(hexanoyloxy)butyl]-[2-(trimethylazaniumyl)ethoxy]phosphinate
1-(9Z-hexadecenoyl)-sn-glycero-3-phosphoethanolamine
a 1-acyl-sn-glycero-3-phosphoethanolamine (n-C16:1)
a 2-acyl-sn-glycero-3-phosphoethanolamine (n-C16:1)
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] hexadec-7-enoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hydroxypropan-2-yl] (E)-hexadec-11-enoate
6-Amino-2-[2-[(5-amino-1-carboxy-4-hydroxypentyl)amino]-2-(1-carboxypentyl)hydrazinyl]-5-hydroxyhexanoic acid
2-(butylamino)-N-[4-[5-[[2-(butylamino)-1-oxoethyl]amino]-1,3-benzoxazol-2-yl]phenyl]acetamide
(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(3-methylbut-1-ynyl)-2-[[methyl(5-pyrimidinylmethyl)amino]methyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2S,3S,3aR,9bR)-3-(hydroxymethyl)-6-oxo-N-(2-piperidin-1-ylethyl)-1-(pyridin-2-ylmethyl)-3,3a,4,9b-tetrahydro-2H-pyrrolo[2,3-a]indolizine-2-carboxamide
(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(3-methylbut-1-ynyl)-2-[[methyl(5-pyrimidinylmethyl)amino]methyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(3-methylbut-1-ynyl)-2-[[methyl(5-pyrimidinylmethyl)amino]methyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(3-methylbut-1-ynyl)-2-[[methyl(5-pyrimidinylmethyl)amino]methyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(3-methylbut-1-ynyl)-2-[[methyl(5-pyrimidinylmethyl)amino]methyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(3-methylbut-1-ynyl)-2-[[methyl(5-pyrimidinylmethyl)amino]methyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(3-methylbut-1-ynyl)-2-[[methyl(5-pyrimidinylmethyl)amino]methyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(3-methylbut-1-ynyl)-2-[[methyl(5-pyrimidinylmethyl)amino]methyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2R,3R,3aS,9bS)-3-(hydroxymethyl)-6-oxo-N-(2-piperidin-1-ylethyl)-1-(pyridin-2-ylmethyl)-3,3a,4,9b-tetrahydro-2H-pyrrolo[2,3-a]indolizine-2-carboxamide
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (Z)-hexadec-9-enoate
[2-hydroxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] propanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] acetate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (E)-hexadec-9-enoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (E)-hexadec-7-enoate
1-(10E-undecenyl)-2-acetyl-sn-glycero-3-phosphocholine
PE(16:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
AMPK-IN-3
AMPK-IN-3 (compound 67) is a potent and selective AMPK inhibitor with IC50s of 60.7, 107 and 3820 nM for AMPK (α2), AMPK (α1) and KDR, respectively. AMPK-IN-3 inhibits AMPK does not affect cell viability or cause significant cytotoxicity in K562 cells. AMPK-IN-3 can be used in study of cancer[1].