Exact Mass: 415.3576

Exact Mass Matches: 415.3576

Found 162 metabolites which its exact mass value is equals to given mass value 415.3576, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Tomatidine

5,7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2-piperidine]-16-ol

C27H45NO2 (415.345)


Tomatidine is the aglycone derivative of tomatine. Tomatidine belongs to the chemical family known as Spirosolanes and Derivatives. These are steroidal alkaloids whose structure contains a spirosolane skeleton. Tomatine (the glycosylated form of tomatidine) is a mildly toxic glycoalkaloid or glycospirosolane found in the stems and leaves of tomato plants as well as in the fruit of unripened (green) tomatoes (up to 500 mg/kg). Red, ripe tomatoes have somewhat reduced amounts of tomatine and tomatidine. Both tomatine and tomatidine possess antimicrobial, antifungal and antiviral properties. Tomatidine has been shown to exhibit anti-virulence activity against normal strains of Staphylococcus aureus as well as the ability to potentiate the effect of aminoglycoside antibiotics (PMID: 24877760). Recent studies have shown that tomatidine stimulates mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine has been shown to increase skeletal muscle mTORC1 signaling, reduce skeletal muscle atrophy, enhance recovery from skeletal muscle atrophy, stimulate skeletal muscle hypertrophy, and increase strength and exercise capacity (PMID: 24719321). Tomatidine has also been shown to significantly inhibit cholesterol ester accumulation induced by acetylated LDL in human monocyte-derived macrophages in a dose-dependent manner. Tomatidine also inhibits cholesterol ester formation in Chinese hamster ovary cells overexpressing acyl-CoA:cholesterol acyl-transferase (ACAT)-1 or ACAT-2, suggesting that tomatidine suppresses both ACAT-1 and ACAT-2 activities. The oral administration of tomatidine to apoE-deficient mice significantly reduces levels of serum cholesterol, LDL-cholesterol, and the size of atherosclerotic lesions (PMID: 22224814). Alkaloid from Lycopersicon esculentum (tomato). Tomatidine is found in garden tomato, garden tomato (variety), and potato. Tomatidine acts as an anti-inflammatory agent by blocking NF-κB and JNK signaling[1]. Tomatidine activates autophagy either in mammal cells or C elegans[2]. Tomatidine acts as an anti-inflammatory agent by blocking NF-κB and JNK signaling[1]. Tomatidine activates autophagy either in mammal cells or C elegans[2].

   

Myxalamid A

(2E,4E,6Z,8E,10E,12R,13R,14E)-13-hydroxy-N-[(1S)-2-hydroxy-1-methyl-ethyl]-2,10,12,14,16-pentamethyl-octadeca-2,4,6,8,10,14-hexaenamide

C26H41NO3 (415.3086)


   

3-Hydroxyhexadecanoylcarnitine

(3R)-3-[(3-Hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C23H45NO5 (415.3298)


3-Hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 3-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). 3-Hydroxyhexadecanoylcarnitine can be found in urine and faces as well. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. A human metabolite taken as a putative food compound of mammalian origin [HMDB]

   

3-hydroxyhexadecanoyl carnitine

3-[(3-Hydroxyhexadecanoyl)oxy]-4-(trimethylammonio)butanoic acid

C23H45NO5 (415.3298)


3-Hydroxyhexadecanoyl carnitine is an acylcarnitine. More specifically, it is an 3-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxyhexadecanoyl carnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-hydroxyhexadecanoyl carnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 3-hydroxyhexadecanoyl carnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

16-Hydroxyhexadecanoylcarnitine

3-[(16-hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO5 (415.3298)


16-hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 16-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 16-hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 16-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 16-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2S)-2-Hydroxyhexadecanoylcarnitine

3-[(2-hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO5 (415.3298)


(2S)-2-hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an (2S)-2-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2S)-2-hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (2S)-2-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (2S)-2-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

5-Hydroxyhexadecanoylcarnitine

3-[(5-hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO5 (415.3298)


5-hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 5-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 5-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 5-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

7-Hydroxyhexadecanoylcarnitine

3-[(7-hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO5 (415.3298)


7-hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 7-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 7-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 7-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

8-Hydroxyhexadecanoylcarnitine

3-[(8-hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO5 (415.3298)


8-hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 8-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 8-hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 8-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 8-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

9-Hydroxyhexadecanoylcarnitine

3-[(9-hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO5 (415.3298)


9-hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 9-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 9-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 9-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

10-Hydroxyhexadecanoylcarnitine

3-[(10-hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO5 (415.3298)


10-hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 10-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 10-hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 10-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 10-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

11-Hydroxyhexadecanoylcarnitine

3-[(11-hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO5 (415.3298)


11-hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 11-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 11-hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 11-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 11-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

12-Hydroxyhexadecanoylcarnitine

3-[(12-Hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C23H45NO5 (415.3298)


12-hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 12-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 12-hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 12-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 12-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

13-Hydroxyhexadecanoylcarnitine

3-[(13-hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO5 (415.3298)


13-hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 13-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 13-hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 13-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 13-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

6-Hydroxyhexadecanoylcarnitine

3-[(6-hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO5 (415.3298)


6-hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 6-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 6-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 6-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Stearoyl Methionine

N-Stearoyl-DL-methionine, monosodium salt, (L)-isomer

C23H45NO3S (415.312)


N-stearoyl methionine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Stearic acid amide of Methionine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Stearoyl Methionine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Stearoyl Methionine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Eicosapentaenoyl Isoleucine

2-(icosa-5,8,11,14,17-pentaenamido)-3-methylpentanoic acid

C26H41NO3 (415.3086)


N-eicosapentaenoyl isoleucine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Eicosapentaenoic acid amide of Isoleucine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Eicosapentaenoyl Isoleucine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Eicosapentaenoyl Isoleucine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Eicosapentaenoyl Leucine

2-(icosa-5,8,11,14,17-pentaenamido)-4-methylpentanoic acid

C26H41NO3 (415.3086)


N-eicosapentaenoyl leucine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Eicosapentaenoic acid amide of Leucine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Eicosapentaenoyl Leucine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Eicosapentaenoyl Leucine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

4,7beta-Dimethyl-4-azacholestan-3-one

4,6,9a,11a-tetramethyl-1-(6-methylheptan-2-yl)-2,3,3a,3b,4,5,5a,8,9,9b,10,11-dodecahydro-1H-indeno[5,4-f]quinolin-7-one

C28H49NO (415.3814)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058891 - 5-alpha Reductase Inhibitors

   

Cholesterol nitrite

[10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] nitrite

C27H45NO2 (415.345)


   

Tomatidine

5 alpha,20 beta(F),22 alpha(F),25 beta(F),27- azaspirostan-3 beta-ol

C27H45NO2 (415.345)


Tomatidine is a 3beta-hydroxy steroid resulting from the substitution of the 3beta-hydrogen of tomatidane by a hydroxy group. It is an azaspiro compound, an oxaspiro compound and a 3beta-hydroxy steroid. It is a conjugate base of a tomatidine(1+). It derives from a hydride of a tomatidane. Tomatidine is a natural product found in Solanum dunalianum, Solanum kieseritzkii, and other organisms with data available. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 20 Tomatidine acts as an anti-inflammatory agent by blocking NF-κB and JNK signaling[1]. Tomatidine activates autophagy either in mammal cells or C elegans[2]. Tomatidine acts as an anti-inflammatory agent by blocking NF-κB and JNK signaling[1]. Tomatidine activates autophagy either in mammal cells or C elegans[2].

   

Delavine

(1R,2S,6S,9S,10R,11R,14S,15S,17R,18S,20S,23R,24S)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.02,11.04,9.015,24.018,23]pentacosane-17,20-diol

C27H45NO2 (415.345)


Hupehenine is a natural product found in Fritillaria thunbergii, Fritillaria delavayi, and other organisms with data available. Hupehenine, a bioactive isosteroidal alkaloid, is a main antitussive components present in most of Fritillaria hupehensis[1]. Hupehenine, a bioactive isosteroidal alkaloid, is a main antitussive components present in most of Fritillaria hupehensis[1].

   

Songbeinine

Songbeinine

C27H45NO2 (415.345)


   

Veramivirine

Veramivirine

C27H45NO2 (415.345)


   

Solafloridine

Solafloridine

C27H45NO2 (415.345)


   

Stenophylline B

Stenophylline B

C27H45NO2 (415.345)


   

N-Demethylpuqietinone

N-Demethylpuqietinone

C27H45NO2 (415.345)


   

scytoscalarol

scytoscalarol

C26H45N3O (415.3562)


   

Edwardinine

Edwardinine

C27H45NO2 (415.345)


   

Spirostan-3-amine #

Spirostan-3-amine #

C27H45NO2 (415.345)


   

16-Epi-dihydro-solasodine

16-Epi-dihydro-solasodine

C27H45NO2 (415.345)


   

edpetilidine

edpetilidine

C27H45NO2 (415.345)


   
   

(Z,Z)-N-[(4-hydroxy-3-methoxyphenyl)methyl]-octadeca-9,12-dienamide|Livanil|N-vanillyl-9Z,12Z-octadecadienamide|N-vanillyllinoleamide

(Z,Z)-N-[(4-hydroxy-3-methoxyphenyl)methyl]-octadeca-9,12-dienamide|Livanil|N-vanillyl-9Z,12Z-octadecadienamide|N-vanillyllinoleamide

C26H41NO3 (415.3086)


   

Cyclorolfoxazine

Cyclorolfoxazine

C26H41NO3 (415.3086)


   

7,8-Dihydro-(E,E)-3-(7,16-Tricosadienyl)-1H-2-carboxaldehyde

7,8-Dihydro-(E,E)-3-(7,16-Tricosadienyl)-1H-2-carboxaldehyde

C28H49NO (415.3814)


   

5alpha,6-dihydroleptinidine|Dihydroleptinidin (5alpha-Solanidandiol-3beta,23beta)|dihydroleptinidine

5alpha,6-dihydroleptinidine|Dihydroleptinidin (5alpha-Solanidandiol-3beta,23beta)|dihydroleptinidine

C27H45NO2 (415.345)


   

(22R,25S)-22,26-epiminocholest-3beta-ol-6-one|N-demethylpuqieninone

(22R,25S)-22,26-epiminocholest-3beta-ol-6-one|N-demethylpuqieninone

C27H45NO2 (415.345)


   

3,6-Cevanediol

3,6-Cevanediol

C27H45NO2 (415.345)


Origin: Plant; SubCategory_DNP: Steroidal alkaloids, Veratrum alkaloids

   

Petilidine

Petilidine

C27H45NO2 (415.345)


Origin: Plant; SubCategory_DNP: Steroidal alkaloids, Petilium alkaloids

   

Soladulcidine

(22R,25R)-spirosolan-3beta-ol

C27H45NO2 (415.345)


   

Teinemine

(22S,25S)-22,26-epiminocholest-5-ene-3beta,16alpha-diol

C27H45NO2 (415.345)


   

22-iso-teinemine

(22R,25S)-22,26-epiminocholest-5-ene-3beta,16alpha-diol

C27H45NO2 (415.345)


   

CAR 16:0;O

(4S)-4-[(2-hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO5 (415.3298)


   

NA 26:6;O2

N-(9Z,12Z-octadecadienoyl) dopamine

C26H41NO3 (415.3086)


   

25-Hydroxyvitamin D2 (6,19,19-d3) solution

25-Hydroxyvitamin D2 (6,19,19-d3) solution

C28H41D3O2 (415.3529)


   

N-(1-Oxooctadecyl)-DL-methionine

N-(1-Oxooctadecyl)-DL-methionine

C23H45NO3S (415.312)


   

N-Linoleoyldopamine

N-Linoleoyldopamine

C26H41NO3 (415.3086)


D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors

   

N-hexanoylphytosphingosine

N-hexanoylphytosphingosine

C24H49NO4 (415.3661)


   

(2S)-2-Hydroxyhexadecanoylcarnitine

3-[(2-hydroxyhexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H45NO5 (415.3298)


(2S)-2-hydroxyhexadecanoylcarnitine is an acylcarnitine. More specifically, it is an (2S)-2-hydroxyhexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2S)-2-hydroxyhexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (2S)-2-hydroxyhexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (2S)-2-hydroxyhexadecanoylcarnitine is elevated in the blood or plasma of individuals with type 2 diabetes mellitus (PMID: 24358186, PMID: 32708684, PMID: 24837145), long-chain 3-hydroxy acyl CoA dehydrogenase deficiency (PMID: 25888220), and mitochondrial trifunctional protein deficiency (PMID: 19880769). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(25S)-cholestenoate

(25S)-cholestenoate

C27H43O3- (415.3212)


A steroid acid anion that is the conjugate base of (25S)-cholestenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(25R)-3beta-Hydroxycholest-5-en-26-Oate

(25R)-3beta-Hydroxycholest-5-en-26-Oate

C27H43O3- (415.3212)


A 3beta-hydroxycholest-5-en-26-oate in which the stereocentre at position 25 has R-configuration.

   

(1R,2S,4S,5R,6R,7S,8R,9R,12S,13S,16S,18S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-piperidine]-16-ol

(1R,2S,4S,5R,6R,7S,8R,9R,12S,13S,16S,18S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-piperidine]-16-ol

C27H45NO2 (415.345)


   

5-Hydroxyhexadecanoylcarnitine

5-Hydroxyhexadecanoylcarnitine

C23H45NO5 (415.3298)


   

7-Hydroxyhexadecanoylcarnitine

7-Hydroxyhexadecanoylcarnitine

C23H45NO5 (415.3298)


   

8-Hydroxyhexadecanoylcarnitine

8-Hydroxyhexadecanoylcarnitine

C23H45NO5 (415.3298)


   

9-Hydroxyhexadecanoylcarnitine

9-Hydroxyhexadecanoylcarnitine

C23H45NO5 (415.3298)


   

6-Hydroxyhexadecanoylcarnitine

6-Hydroxyhexadecanoylcarnitine

C23H45NO5 (415.3298)


   

10-Hydroxyhexadecanoylcarnitine

10-Hydroxyhexadecanoylcarnitine

C23H45NO5 (415.3298)


   

11-Hydroxyhexadecanoylcarnitine

11-Hydroxyhexadecanoylcarnitine

C23H45NO5 (415.3298)


   

12-Hydroxyhexadecanoylcarnitine

12-Hydroxyhexadecanoylcarnitine

C23H45NO5 (415.3298)


   

13-Hydroxyhexadecanoylcarnitine

13-Hydroxyhexadecanoylcarnitine

C23H45NO5 (415.3298)


   

N-Eicosapentaenoyl Leucine

N-Eicosapentaenoyl Leucine

C26H41NO3 (415.3086)


   

N-Eicosapentaenoyl Isoleucine

N-Eicosapentaenoyl Isoleucine

C26H41NO3 (415.3086)


   

N-(2-hydroxyhexanoyl)sphinganine

N-(2-hydroxyhexanoyl)sphinganine

C24H49NO4 (415.3661)


An N-(2-hydroxyacyl)sphinganine in which the ceramide N-acyl group is specified as 2-hydroxyhexanoyl.

   

3beta-Hydroxycholest-5-en-26-oate

3beta-Hydroxycholest-5-en-26-oate

C27H43O3- (415.3212)


A steroid acid anion that is the conjugate base of 3beta-hydroxycholest-5-en-26-oic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(25S)-dafachronate

(25S)-dafachronate

C27H43O3- (415.3212)


   

(13Z,16Z,19Z,22Z)-octacosatetraenoate

(13Z,16Z,19Z,22Z)-octacosatetraenoate

C28H47O2- (415.3576)


A polyunsaturated fatty acid anion that is the conjugate base of (13Z,16Z,19Z,22Z)-octacosatetraenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

2-Aminopentacosane-1,3,4-triol

2-Aminopentacosane-1,3,4-triol

C25H53NO3 (415.4025)


   

(3Z,6Z,9Z,12Z,15Z)-N-[(E)-1,3-dihydroxyoct-4-en-2-yl]octadeca-3,6,9,12,15-pentaenamide

(3Z,6Z,9Z,12Z,15Z)-N-[(E)-1,3-dihydroxyoct-4-en-2-yl]octadeca-3,6,9,12,15-pentaenamide

C26H41NO3 (415.3086)


   

Cer 9:0;3O/14:1;(2OH)

Cer 9:0;3O/14:1;(2OH)

C23H45NO5 (415.3298)


   

Cer 8:0;3O/15:1;(2OH)

Cer 8:0;3O/15:1;(2OH)

C23H45NO5 (415.3298)


   

Cer 10:0;3O/13:1;(2OH)

Cer 10:0;3O/13:1;(2OH)

C23H45NO5 (415.3298)


   

Cer 11:0;3O/12:1;(2OH)

Cer 11:0;3O/12:1;(2OH)

C23H45NO5 (415.3298)


   

(2E,4E,6Z,8E,10E,12R,13R,14E)-13-hydroxy-N-[(1S)-2-hydroxy-1-methyl-ethyl]-2,10,12,14,16-pentamethyl-octadeca-2,4,6,8,10,14-hexaenamide

(2E,4E,6Z,8E,10E,12R,13R,14E)-13-hydroxy-N-[(1S)-2-hydroxy-1-methyl-ethyl]-2,10,12,14,16-pentamethyl-octadeca-2,4,6,8,10,14-hexaenamide

C26H41NO3 (415.3086)


   

3-Hydroxyhexadecanoylcarnitine

3-Hydroxyhexadecanoylcarnitine

C23H45NO5 (415.3298)


An O-acylcarnitine having 3-hydroxyhexadecanoyl as the acyl substituent.

   

2-Hydroxyhexadecanoylcarnitine

2-Hydroxyhexadecanoylcarnitine

C23H45NO5 (415.3298)


   

octacosatetraenoate

octacosatetraenoate

C28H47O2 (415.3576)


A polyunsaturated fatty acid anion that is the conjugate base of octacosatetraenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

O-(hydroxyhexadecanoyl)carnitine

O-(hydroxyhexadecanoyl)carnitine

C23H45NO5 (415.3298)


An O-acylcarnitine that is carnitine having a hydroxyhexadecanoyl group as the acyl substituent in which the position of the hydroxy group is unspecified.

   

O-(hydroxyhexadecanoyl)-L-carnitine

O-(hydroxyhexadecanoyl)-L-carnitine

C23H45NO5 (415.3298)


An O-acyl-L-carnitine that is L-carnitine having a hydroxyhexadecanoyl group as the acyl substituent in which the position of the hydroxy group is unspecified.

   

CarE(16:0)

CarE(16:0(1+O))

C23H45NO5 (415.3298)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   

NA-Dopamine 18:2(9E,12E)

NA-Dopamine 18:2(9E,12E)

C26H41NO3 (415.3086)


   

NA-Dopamine 18:2(9Z,12Z)

NA-Dopamine 18:2(9Z,12Z)

C26H41NO3 (415.3086)


   

NA-Ile 20:5(5Z,8Z,11Z,14Z,17Z)

NA-Ile 20:5(5Z,8Z,11Z,14Z,17Z)

C26H41NO3 (415.3086)


   

NA-Leu 20:5(5Z,8Z,11Z,14Z,17Z)

NA-Leu 20:5(5Z,8Z,11Z,14Z,17Z)

C26H41NO3 (415.3086)


   
   

NA-PABA 19:1(9Z)

NA-PABA 19:1(9Z)

C26H41NO3 (415.3086)


   

NA-Phe 17:1(9Z)

NA-Phe 17:1(9Z)

C26H41NO3 (415.3086)


   
   
   

Cer 14:0;O2/10:0;2OH

Cer 14:0;O2/10:0;2OH

C24H49NO4 (415.3661)


   

Cer 14:0;O2/10:0;3OH

Cer 14:0;O2/10:0;3OH

C24H49NO4 (415.3661)


   

Cer 14:0;O2/10:0;O

Cer 14:0;O2/10:0;O

C24H49NO4 (415.3661)


   

Cer 14:0;O3/10:0

Cer 14:0;O3/10:0

C24H49NO4 (415.3661)


   
   

6,8,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

6,8,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1r,2s,6r,9s,10r,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6r,9s,10r,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1r,2r,3as,3br,5as,7s,9as,9bs,11as)-9a,11a-dimethyl-1-[(1r)-1-[(5r)-5-methyl-3,4,5,6-tetrahydropyridin-2-yl]ethyl]-tetradecahydro-1h-cyclopenta[a]phenanthrene-2,7-diol

(1r,2r,3as,3br,5as,7s,9as,9bs,11as)-9a,11a-dimethyl-1-[(1r)-1-[(5r)-5-methyl-3,4,5,6-tetrahydropyridin-2-yl]ethyl]-tetradecahydro-1h-cyclopenta[a]phenanthrene-2,7-diol

C27H45NO2 (415.345)


   

(1r,2s,3as,3bs,7s,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5r)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

(1r,2s,3as,3bs,7s,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5r)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

C27H45NO2 (415.345)


   

5-(tricos-1-en-1-yl)-1h-pyrrole-2-carbaldehyde

5-(tricos-1-en-1-yl)-1h-pyrrole-2-carbaldehyde

C28H49NO (415.3814)


   

(1r,4s,5'r,6r,7s,9s,12s,13s,16s,18s)-5',7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-16-ol

(1r,4s,5'r,6r,7s,9s,12s,13s,16s,18s)-5',7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-16-ol

C27H45NO2 (415.345)


   

(1r,3as,3br,7s,9ar,9bs,11s,11ar)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-7,11-diol

(1r,3as,3br,7s,9ar,9bs,11s,11ar)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-7,11-diol

C27H45NO2 (415.345)


   

(2e,4e,6z,8e,10e,12s,13r,14e,16r)-13-hydroxy-n-[(2r)-1-hydroxypropan-2-yl]-2,10,12,14,16-pentamethyloctadeca-2,4,6,8,10,14-hexaenimidic acid

(2e,4e,6z,8e,10e,12s,13r,14e,16r)-13-hydroxy-n-[(2r)-1-hydroxypropan-2-yl]-2,10,12,14,16-pentamethyloctadeca-2,4,6,8,10,14-hexaenimidic acid

C26H41NO3 (415.3086)


   

17αh-persicanidine a

NA

C27H45NO2 (415.345)


{"Ingredient_id": "HBIN001988","Ingredient_name": "17\u03b1h-persicanidine a","Alias": "NA","Ingredient_formula": "C27H45NO2","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "16975","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(1r,3as,3bs,5as,7s,9ar,9bs,11as)-7-hydroxy-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-tetradecahydrocyclopenta[a]phenanthren-5-one

(1r,3as,3bs,5as,7s,9ar,9bs,11as)-7-hydroxy-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-tetradecahydrocyclopenta[a]phenanthren-5-one

C27H45NO2 (415.345)


   

9a,11a-dimethyl-1-[1-(5-methyl-3,4,5,6-tetrahydropyridin-2-yl)ethyl]-tetradecahydro-1h-cyclopenta[a]phenanthrene-2,7-diol

9a,11a-dimethyl-1-[1-(5-methyl-3,4,5,6-tetrahydropyridin-2-yl)ethyl]-tetradecahydro-1h-cyclopenta[a]phenanthrene-2,7-diol

C27H45NO2 (415.345)


   

9a,11a-dimethyl-1-[1-(5-methylpiperidin-2-yl)ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

9a,11a-dimethyl-1-[1-(5-methylpiperidin-2-yl)ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

C27H45NO2 (415.345)


   

(1r,2s,9r,10s,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,9r,10s,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

n-[(10-hydroxy-4b,7,7,10a,12a-pentamethyl-2-methylidene-dodecahydro-1h-chrysen-1-yl)methyl]guanidine

n-[(10-hydroxy-4b,7,7,10a,12a-pentamethyl-2-methylidene-dodecahydro-1h-chrysen-1-yl)methyl]guanidine

C26H45N3O (415.3562)


   

(1r,2s,6s,9s,10s,11s,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6s,9s,10s,11s,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1r,2s,4s,5'r,6r,7s,8r,9s,12s,13s,16s,18s)-5',7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-16-ol

(1r,2s,4s,5'r,6r,7s,8r,9s,12s,13s,16s,18s)-5',7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-16-ol

C27H45NO2 (415.345)


   

n-(4-amino-2-hydroxybutyl)-n-(3-aminopropyl)-16-hydroxyhexadecanamide

n-(4-amino-2-hydroxybutyl)-n-(3-aminopropyl)-16-hydroxyhexadecanamide

C23H49N3O3 (415.3774)


   

(2e,4e,6z,8e,10e,12r,13r,14e,16s)-13-hydroxy-n-[(2s)-1-hydroxypropan-2-yl]-2,10,12,14,16-pentamethyloctadeca-2,4,6,8,10,14-hexaenimidic acid

(2e,4e,6z,8e,10e,12r,13r,14e,16s)-13-hydroxy-n-[(2s)-1-hydroxypropan-2-yl]-2,10,12,14,16-pentamethyloctadeca-2,4,6,8,10,14-hexaenimidic acid

C26H41NO3 (415.3086)


   

(6r,10r,17s,18s,20s,23r)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(6r,10r,17s,18s,20s,23r)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(6s,10r,17r,23r)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(6s,10r,17r,23r)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

13-hydroxy-n-(1-hydroxypropan-2-yl)-2,10,12,14,16-pentamethyloctadeca-2,4,6,8,10,14-hexaenimidic acid

13-hydroxy-n-(1-hydroxypropan-2-yl)-2,10,12,14,16-pentamethyloctadeca-2,4,6,8,10,14-hexaenimidic acid

C26H41NO3 (415.3086)


   

(1r,2r,3as,3bs,7s,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

(1r,2r,3as,3bs,7s,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

C27H45NO2 (415.345)


   

(1r,2s,6r,9s,10r,11r,14r,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6r,9s,10r,11r,14r,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1r,2r,6s,8s,9r,11r,14s,15s,17r,18s,20s,23r,24s)-6,8,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2r,6s,8s,9r,11r,14s,15s,17r,18s,20s,23r,24s)-6,8,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1s,2r,5s,7s,10s,11s,14s,15r,16s,17s,18s,20s,23s)-10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁷,²²]tetracosane-7,18-diol

(1s,2r,5s,7s,10s,11s,14s,15r,16s,17s,18s,20s,23s)-10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁷,²²]tetracosane-7,18-diol

C27H45NO2 (415.345)


   

(1r,2r,6r,9s,10r,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2r,6r,9s,10r,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1r,2s,6s,9s,10r,11r,14r,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6s,9s,10r,11r,14r,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1s,3as,3br,7s,9ar,9br,11as)-1-[(1r)-1-hydroxy-1-[(2s,5r)-5-methylpiperidin-2-yl]ethyl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1s,3as,3br,7s,9ar,9br,11as)-1-[(1r)-1-hydroxy-1-[(2s,5r)-5-methylpiperidin-2-yl]ethyl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H45NO2 (415.345)


   

(1s,2r,4r,5's,6s,7s,8s,9s,12s,13s,16s,18r)-5',7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-16-ol

(1s,2r,4r,5's,6s,7s,8s,9s,12s,13s,16s,18r)-5',7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-16-ol

C27H45NO2 (415.345)


   

(1r,3as,3br,7s,9ar,9bs,11r,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-7,11-diol

(1r,3as,3br,7s,9ar,9bs,11r,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-7,11-diol

C27H45NO2 (415.345)


   

(1r,2s,6r,9s,10r,11s,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6r,9s,10r,11s,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁷,²²]tetracosane-7,18-diol

10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁷,²²]tetracosane-7,18-diol

C27H45NO2 (415.345)


   

(1r,2r,3as,3bs,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

(1r,2r,3as,3bs,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

C27H45NO2 (415.345)


   

(2e,4e)-13-hydroxy-n-(1-hydroxypropan-2-yl)-2,10,12,14,16-pentamethyloctadeca-2,4,6,8,10,14-hexaenimidic acid

(2e,4e)-13-hydroxy-n-(1-hydroxypropan-2-yl)-2,10,12,14,16-pentamethyloctadeca-2,4,6,8,10,14-hexaenimidic acid

C26H41NO3 (415.3086)


   

(1r,2s,4s,5's,6r,7s,8r,9s,12s,13s,16s,18s)-5',7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-16-ol

(1r,2s,4s,5's,6r,7s,8r,9s,12s,13s,16s,18s)-5',7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2'-piperidin]-16-ol

C27H45NO2 (415.345)


   

n-[(2s)-4-amino-2-hydroxybutyl]-n-(3-aminopropyl)-16-hydroxyhexadecanamide

n-[(2s)-4-amino-2-hydroxybutyl]-n-(3-aminopropyl)-16-hydroxyhexadecanamide

C23H49N3O3 (415.3774)


   

(1r,2s,6s,9s,10r,11s,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6s,9s,10r,11s,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1r,2s,6s,9s,10r,11r,14s,15r,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6s,9s,10r,11r,14s,15r,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(2e,4e,6z,8e,10e,12r,13r,14e)-13-hydroxy-n-[(2s)-1-hydroxypropan-2-yl]-2,10,12,14,16-pentamethyloctadeca-2,4,6,8,10,14-hexaenimidic acid

(2e,4e,6z,8e,10e,12r,13r,14e)-13-hydroxy-n-[(2s)-1-hydroxypropan-2-yl]-2,10,12,14,16-pentamethyloctadeca-2,4,6,8,10,14-hexaenimidic acid

C26H41NO3 (415.3086)


   

1-[1-hydroxy-1-(5-methylpiperidin-2-yl)ethyl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

1-[1-hydroxy-1-(5-methylpiperidin-2-yl)ethyl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H45NO2 (415.345)


   

(1r,2s,6s,9s,10r,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6s,9s,10r,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1r,3as,3br,7s,9ar,9bs,11s,11ar)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-7,11-diol

(1r,3as,3br,7s,9ar,9bs,11s,11ar)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-7,11-diol

C27H45NO2 (415.345)


   

(1r,3as,3br,7s,9ar,9bs,11s,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-7,11-diol

(1r,3as,3br,7s,9ar,9bs,11s,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-7,11-diol

C27H45NO2 (415.345)


   

(1r,2r,6r,9s,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2r,6r,9s,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

9a,11a-dimethyl-1-[1-(5-methylpiperidin-2-yl)ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-7,11-diol

9a,11a-dimethyl-1-[1-(5-methylpiperidin-2-yl)ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-7,11-diol

C27H45NO2 (415.345)


   

5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-amine

5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-amine

C27H45NO2 (415.345)


   

(1r,2s,6s,9r,10s,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6s,9r,10s,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1r,2s,6s,9s,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6s,9s,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1r,2s,6r,9s,10r,11r,14s,15s,17r,18s,20s,23r,24r)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6r,9s,10r,11r,14s,15s,17r,18s,20s,23r,24r)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

3-(tricos-16-en-1-yl)-1h-pyrrole-2-carbaldehyde

3-(tricos-16-en-1-yl)-1h-pyrrole-2-carbaldehyde

C28H49NO (415.3814)


   

(1r,2r,3as,3bs,7r,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5r)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

(1r,2r,3as,3bs,7r,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2s,5r)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

C27H45NO2 (415.345)


   

(2r,3as,3br,5as,7s,9as,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(5s)-5-methyl-3,4,5,6-tetrahydropyridin-2-yl]ethyl]-tetradecahydro-1h-cyclopenta[a]phenanthrene-2,7-diol

(2r,3as,3br,5as,7s,9as,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(5s)-5-methyl-3,4,5,6-tetrahydropyridin-2-yl]ethyl]-tetradecahydro-1h-cyclopenta[a]phenanthrene-2,7-diol

C27H45NO2 (415.345)


   

(1r,2s,6r,9s,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6r,9s,11r,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1r,2r,3as,3bs,7r,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

(1r,2r,3as,3bs,7r,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

C27H45NO2 (415.345)


   

(1r,2s,6s,9s,11s,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6s,9s,11s,14s,15s,17r,18s,20s,23r,24s)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

(1'r,2r,2'r,4's,5s,7's,8's,9's,12'r,13's,16'r,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-amine

(1'r,2r,2'r,4's,5s,7's,8's,9's,12'r,13's,16'r,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-amine

C27H45NO2 (415.345)


   

(1r,2s,6s,9s,10r,11r,14r,15s,17r,18s,20s,23r,24r)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

(1r,2s,6s,9s,10r,11r,14r,15s,17r,18s,20s,23r,24r)-6,10,23-trimethyl-4-azahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosane-17,20-diol

C27H45NO2 (415.345)


   

n-{[(1r,4ar,4br,6ar,10s,10ar,10br,12ar)-10-hydroxy-4b,7,7,10a,12a-pentamethyl-2-methylidene-dodecahydro-1h-chrysen-1-yl]methyl}guanidine

n-{[(1r,4ar,4br,6ar,10s,10ar,10br,12ar)-10-hydroxy-4b,7,7,10a,12a-pentamethyl-2-methylidene-dodecahydro-1h-chrysen-1-yl]methyl}guanidine

C26H45N3O (415.3562)


   

(1s,3as,3bs,7s,9ar,9bs,11as)-1-[(1r)-1-hydroxy-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1s,3as,3bs,7s,9ar,9bs,11as)-1-[(1r)-1-hydroxy-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H45NO2 (415.345)


   

(1r,2r,3as,3br,5as,7s,9as,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(5s)-5-methyl-3,4,5,6-tetrahydropyridin-2-yl]ethyl]-tetradecahydro-1h-cyclopenta[a]phenanthrene-2,7-diol

(1r,2r,3as,3br,5as,7s,9as,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(5s)-5-methyl-3,4,5,6-tetrahydropyridin-2-yl]ethyl]-tetradecahydro-1h-cyclopenta[a]phenanthrene-2,7-diol

C27H45NO2 (415.345)


   

(1r,2r,3as,3br,5as,7s,9as,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(5r)-5-methyl-3,4,5,6-tetrahydropyridin-2-yl]ethyl]-tetradecahydro-1h-cyclopenta[a]phenanthrene-2,7-diol

(1r,2r,3as,3br,5as,7s,9as,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(5r)-5-methyl-3,4,5,6-tetrahydropyridin-2-yl]ethyl]-tetradecahydro-1h-cyclopenta[a]phenanthrene-2,7-diol

C27H45NO2 (415.345)


   

3-[(16e)-tricos-16-en-1-yl]-1h-pyrrole-2-carbaldehyde

3-[(16e)-tricos-16-en-1-yl]-1h-pyrrole-2-carbaldehyde

C28H49NO (415.3814)


   

(1r,3as,3bs,5as,7s,9ar,9bs,11ar)-7-hydroxy-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-tetradecahydrocyclopenta[a]phenanthren-5-one

(1r,3as,3bs,5as,7s,9ar,9bs,11ar)-7-hydroxy-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-tetradecahydrocyclopenta[a]phenanthren-5-one

C27H45NO2 (415.345)


   

(1r,2r,3as,3bs,7s,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

(1r,2r,3as,3bs,7s,9ar,9bs,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2r,5s)-5-methylpiperidin-2-yl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

C27H45NO2 (415.345)