Exact Mass: 401.35317

Exact Mass Matches: 401.35317

Found 43 metabolites which its exact mass value is equals to given mass value 401.35317, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

3beta,4-Dimethyl-4-aza-5alpha-cholestane

3beta,4-Dimethyl-4-aza-5alpha-cholestane

C28H51N (401.4021286)


   
   

3-hydroxypentadecanoyl carnitine

3-[(3-hydroxypentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C22H43NO5 (401.31410680000005)


3-Hydroxypentadecanoyl carnitine is an acylcarnitine. More specifically, it is an 3-hydroxypentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxypentadecanoyl carnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-hydroxypentadecanoyl carnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

10-Hydroxypentadecanoylcarnitine

3-[(10-hydroxypentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C22H43NO5 (401.31410680000005)


10-Hydroxypentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 10-hydroxypentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 10-Hydroxypentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 10-Hydroxypentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

7-Hydroxypentadecanoylcarnitine

3-[(7-hydroxypentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C22H43NO5 (401.31410680000005)


7-Hydroxypentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 7-hydroxypentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-Hydroxypentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 7-Hydroxypentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

9-Hydroxypentadecanoylcarnitine

3-[(9-hydroxypentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C22H43NO5 (401.31410680000005)


9-Hydroxypentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 9-hydroxypentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-Hydroxypentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 9-Hydroxypentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

6-Hydroxypentadecanoylcarnitine

3-[(6-hydroxypentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C22H43NO5 (401.31410680000005)


6-Hydroxypentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 6-hydroxypentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-Hydroxypentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 6-Hydroxypentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

5-Hydroxypentadecanoylcarnitine

3-[(5-hydroxypentadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C22H43NO5 (401.31410680000005)


5-Hydroxypentadecanoylcarnitine is an acylcarnitine. More specifically, it is an 5-hydroxypentadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Hydroxypentadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 5-Hydroxypentadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Anisperimus

({6-[(diaminomethylidene)amino]hexyl}carbamoyl)methyl N-{4-[(3-aminobutyl)amino]butyl}carbamate

C18H39N7O3 (401.31142239999997)


   

Cyclomicuranine L|Cyclomikuranin|Nb-dimethylcycloxobuxoviricine

Cyclomicuranine L|Cyclomikuranin|Nb-dimethylcycloxobuxoviricine

C26H43NO2 (401.3293618)


   
   

Macamide Impurity 2

(E)-N-[(3-methoxyphenyl)methyl]octadec-9-enamide

C26H43NO2 (401.3293618)


N-(3-Methoxybenzyl)oleamide (MAC 18:1) is an individual macamide. N-(3-Methoxybenzyl)oleamide can be isolated from Lepidium meyenii (maca)[1].

   

6,7-didehydro-26,28didemethyl-16,28-secosolanidan-3,16-diol

"NCGC00160316-01!6,7-didehydro-26,28didemethyl-16,28-secosolanidan-3,16-diol"

C26H43NO2 (401.3293618)


   

N-propyl-16,16-dimethyl-5Z,8Z,11Z,14Z-docosatetraenoyl amine

N-propyl-16,16-dimethyl-5Z,8Z,11Z,14Z-docosatetraenoyl amine

C27H47NO (401.3657452)


   
   

PGF2alpha-EA(d4)

N-(9S,11R,15S-trihydroxy-5Z,13E-prostadienoyl)-ethanolamine(d4)

C22H35D4NO5 (401.30791711200004)


   

NA 27:4

N-propyl-16,16-dimethyl-5Z,8Z,11Z,14Z-docosatetraenoyl amine

C27H47NO (401.3657452)


   

1,3-DIIMINO-5,6-BIS(OCTYLOXY)ISOINDOLINE

1,3-DIIMINO-5,6-BIS(OCTYLOXY)ISOINDOLINE

C24H39N3O2 (401.3042114)


   
   

(3S,4aS,8aS)-2-[(3S)-3-amino-2-hydroxy-4-phenylbutyl]-N-tert-butyl-3,4,4a,5,6,7,8,8a-octahydro-1H-isoquinoline-3-carboxamide

(3S,4aS,8aS)-2-[(3S)-3-amino-2-hydroxy-4-phenylbutyl]-N-tert-butyl-3,4,4a,5,6,7,8,8a-octahydro-1H-isoquinoline-3-carboxamide

C24H39N3O2 (401.3042114)


   

7-Aminocholesterol

7-Aminocholesterol

C27H47NO (401.3657452)


A 3beta-sterol that is cholesterol substituted at position 7 by an amino group.

   

Tetrahydroverazine B

Tetrahydroverazine B

C27H47NO (401.3657452)


   
   
   
   
   
   

(3S,9S,10S,13S,16S)-10,13-dimethyl-17-[(1S)-1-[(2S)-piperidin-2-yl]ethyl]-2,3,4,5,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,16-diol

(3S,9S,10S,13S,16S)-10,13-dimethyl-17-[(1S)-1-[(2S)-piperidin-2-yl]ethyl]-2,3,4,5,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,16-diol

C26H43NO2 (401.3293618)


   
   
   
   
   

(9Z,12Z,15Z,18Z,21Z)-N-(2-hydroxyethyl)tetracosa-9,12,15,18,21-pentaenamide

(9Z,12Z,15Z,18Z,21Z)-N-(2-hydroxyethyl)tetracosa-9,12,15,18,21-pentaenamide

C26H43NO2 (401.3293618)


   

(3-Pyridyl)methyl 12-eicosenoate

(3-Pyridyl)methyl 12-eicosenoate

C26H43NO2 (401.3293618)


   
   

NA-Amylamine 22:4(7Z,10Z,13Z,16Z)

NA-Amylamine 22:4(7Z,10Z,13Z,16Z)

C27H47NO (401.3657452)


   

NA-Histamine 20:2(11Z,14Z)

NA-Histamine 20:2(11Z,14Z)

C25H43N3O (401.3405948)


   

DMHCA

DMHCA

C26H43NO2 (401.3293618)


DMHCA, a potent and selective LXR agonist, specifically activates the cholesterol efflux arm of the LXR pathway without stimulating triglyceride synthesis. DMHCA has anti-inflammatory effects?and can be used for the research of cholesterol homeostasis diabetes[1].

   

(1s,4s,8ar)-1-({[(2e,4s,7e)-1-hydroxy-4,8,12-trimethyltrideca-2,7,11-trien-1-ylidene]amino}methyl)-4-methyl-octahydroindolizin-4-ium

(1s,4s,8ar)-1-({[(2e,4s,7e)-1-hydroxy-4,8,12-trimethyltrideca-2,7,11-trien-1-ylidene]amino}methyl)-4-methyl-octahydroindolizin-4-ium

[C26H45N2O]+ (401.35317)


   

(9z)-n-[(3-methoxyphenyl)methyl]octadec-9-enimidic acid

(9z)-n-[(3-methoxyphenyl)methyl]octadec-9-enimidic acid

C26H43NO2 (401.3293618)


   

(1s,3r,8r,11s,12s,14r,15s,16r)-15-[(1s)-1-(dimethylamino)ethyl]-14-hydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

(1s,3r,8r,11s,12s,14r,15s,16r)-15-[(1s)-1-(dimethylamino)ethyl]-14-hydroxy-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

C26H43NO2 (401.3293618)