Exact Mass: 397.3919586

Exact Mass Matches: 397.3919586

Found 45 metabolites which its exact mass value is equals to given mass value 397.3919586, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Behenoylglycine

2-Docosanamidoacetic acid

C24H47NO3 (397.3555752)


Behenoylglycine is an acylglycine with C-20 fatty acid group as the acyl moiety. Acylglycines 1 possess a common amidoacetic acid moiety and are normally minor metabolites of fatty acids. Elevated levels of certain acylglycines appear in the urine and blood of patients with various fatty acid oxidation disorders. They are normally produced through the action of glycine N-acyltransferase which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine ↔ CoA + N-acylglycine. Behenoylglycine is an acylglycine with C-20 fatty acid group as the acyl moiety.

   

N-Stearoyl Isoleucine

3-methyl-2-octadecanamidopentanoic acid

C24H47NO3 (397.3555752)


N-stearoyl isoleucine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Stearic acid amide of Isoleucine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Stearoyl Isoleucine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Stearoyl Isoleucine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Stearoyl Leucine

2-[(1-Hydroxyoctadecylidene)amino]-4-methylpentanoate

C24H47NO3 (397.3555752)


N-stearoyl leucine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Stearic acid amide of Leucine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Stearoyl Leucine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Stearoyl Leucine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Hexanoylsphingosine

N-(1,3-dihydroxyoctadec-4-en-2-yl)hexanamide

C24H47NO3 (397.3555752)


   

C6-Ceramide; N-Hexanoylsphingosine

C6-Ceramide; N-Hexanoylsphingosine

C24H47NO3 (397.3555752)


   

N-(2-Hydroxyethyl)tricosanamide

N-(2-Hydroxyethyl)tricosanamide

C25H51NO2 (397.3919586)


   

Tricosanoyl Ethanolamide

N-(2-Hydroxyethyl)tricosanamide

C25H51NO2 (397.3919586)


CONFIDENCE standard compound; INTERNAL_ID 38

   

Tricosanoyl-EA

N-(2-Hydroxyethyl)tricosanamide

C25H51NO2 (397.3919586)


   

C-6 Ceramide

N-[(1S,2R,3E)-2-hydroxy-1-(hydroxymethyl)-3-heptadecen-1-yl]-hexanamide

C24H47NO3 (397.3555752)


   

NAE 23:0

N-(Tricosanoyl)-ethanolamine

C25H51NO2 (397.3919586)


   

stearoyl leucine

Leucine, N-stearoyl-, L-

C24H47NO3 (397.3555752)


   
   

N-docosanoylglycine

N-docosanoylglycine

C24H47NO3 (397.3555752)


An N-acylglycine in which the acyl group is specified as docosanoyl.

   

2-Hydroxypentacosanoate

2-Hydroxypentacosanoate

C25H49O3- (397.3681504)


A 2-hydroxy fatty acid anion that is the conjugate base of 2-hydroxypentacosanoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

N-hexanoyl-D-erythro-sphingosine

N-hexanoyl-D-erythro-sphingosine

C24H47NO3 (397.3555752)


   

N-Hexanoylsphingosine

N-(hexanoyl)sphing-4-enine

C24H47NO3 (397.3555752)


   

(E)-2-aminopentacos-4-ene-1,3-diol

(E)-2-aminopentacos-4-ene-1,3-diol

C25H51NO2 (397.3919586)


   

N-[(E)-1,3-dihydroxyhenicos-4-en-2-yl]propanamide

N-[(E)-1,3-dihydroxyhenicos-4-en-2-yl]propanamide

C24H47NO3 (397.3555752)


   

(Z)-N-(1,3-dihydroxynonan-2-yl)pentadec-9-enamide

(Z)-N-(1,3-dihydroxynonan-2-yl)pentadec-9-enamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxyoct-4-en-2-yl]hexadecanamide

N-[(E)-1,3-dihydroxyoct-4-en-2-yl]hexadecanamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxyheptadec-4-en-2-yl]heptanamide

N-[(E)-1,3-dihydroxyheptadec-4-en-2-yl]heptanamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxyhexadec-4-en-2-yl]octanamide

N-[(E)-1,3-dihydroxyhexadec-4-en-2-yl]octanamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxypentadec-4-en-2-yl]nonanamide

N-[(E)-1,3-dihydroxypentadec-4-en-2-yl]nonanamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxynon-4-en-2-yl]pentadecanamide

N-[(E)-1,3-dihydroxynon-4-en-2-yl]pentadecanamide

C24H47NO3 (397.3555752)


   

(Z)-N-(1,3-dihydroxyoctan-2-yl)hexadec-9-enamide

(Z)-N-(1,3-dihydroxyoctan-2-yl)hexadec-9-enamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxyicos-4-en-2-yl]butanamide

N-[(E)-1,3-dihydroxyicos-4-en-2-yl]butanamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxydocos-4-en-2-yl]acetamide

N-[(E)-1,3-dihydroxydocos-4-en-2-yl]acetamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxynonadec-4-en-2-yl]pentanamide

N-[(E)-1,3-dihydroxynonadec-4-en-2-yl]pentanamide

C24H47NO3 (397.3555752)


   

(Z)-N-(1,3-dihydroxydecan-2-yl)tetradec-9-enamide

(Z)-N-(1,3-dihydroxydecan-2-yl)tetradec-9-enamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxytridec-4-en-2-yl]undecanamide

N-[(E)-1,3-dihydroxytridec-4-en-2-yl]undecanamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxytetradec-4-en-2-yl]decanamide

N-[(E)-1,3-dihydroxytetradec-4-en-2-yl]decanamide

C24H47NO3 (397.3555752)


   

(Z)-N-(1,3-dihydroxyundecan-2-yl)tridec-9-enamide

(Z)-N-(1,3-dihydroxyundecan-2-yl)tridec-9-enamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxyundec-4-en-2-yl]tridecanamide

N-[(E)-1,3-dihydroxyundec-4-en-2-yl]tridecanamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxydec-4-en-2-yl]tetradecanamide

N-[(E)-1,3-dihydroxydec-4-en-2-yl]tetradecanamide

C24H47NO3 (397.3555752)


   

N-[(E)-1,3-dihydroxydodec-4-en-2-yl]dodecanamide

N-[(E)-1,3-dihydroxydodec-4-en-2-yl]dodecanamide

C24H47NO3 (397.3555752)


   

N-(decanoyl)-4E-tetradecasphingenine

N-(decanoyl)-4E-tetradecasphingenine

C24H47NO3 (397.3555752)


   

N-[(E,2S,3R)-1,3-dihydroxytetradec-8-en-2-yl]decanamide

N-[(E,2S,3R)-1,3-dihydroxytetradec-8-en-2-yl]decanamide

C24H47NO3 (397.3555752)


   

N-(hexanoyl)sphing-4-enine

N-(hexanoyl)sphing-4-enine

C24H47NO3 (397.3555752)


An N-acylsphingosine consisting of sphing-4-enine bearing a hexanoyl group on nitrogen.