Exact Mass: 387.31371260000003

Exact Mass Matches: 387.31371260000003

Found 82 metabolites which its exact mass value is equals to given mass value 387.31371260000003, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

3,5-Didecanoylpyridine

1,1-(3,5-Pyridinediyl)bis-1-decanone, 9ci

C25H41NO2 (387.31371260000003)


3,5-Didecanoylpyridine is found in herbs and spices. 3,5-Didecanoylpyridine is an alkaloid from Houttuynia cordata (Yu Xing Cao Alkaloid from Houttuynia cordata (Yu Xing Cao). 3,5-Didecanoylpyridine is found in herbs and spices.

   

25-Azacholesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R)-5-(dimethylamino)pentan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C26H45NO (387.350096)


25-Azacholesterol has potent hypocholesterolemic activity. (PMID 14287266) It specifically inhibits cholesterol side-chain cleavage resulting in a decrease in steroid hormone production (PMID 5165491). Azasteroids may be membrane effectors which, in the case of mitochondria, lead to changes in adenosine triphosphate levels and(or) dehydrogenase activity. Their effects on sterol metabolism, therefore, may be of secondary consideration. (PMID 994744). 25-azacholesterol can induce a myotonic state in muscles. (PMID 5009506). 25-Azacholesterol has potent hypocholesterolemic activity. (PMID 14287266) It specifically inhibits cholesterol side-chain cleavage resulting in a decrease in steroid hormone production (PMID 5165491). Azasteroids may be membrane effectors which, in the case of mitochondria, lead to changes in adenosine triphosphate levels and(or) dehydrogenase activity. Their effects on sterol metabolism, therefore, may be of secondary consideration. (PMID 994744)

   

2-Hydroxymyristoylcarnitine

3-[(2-hydroxytetradecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H41NO5 (387.29845760000006)


2-Hydroxymyristoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxymyristic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxymyristoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 2-hydroxymyristoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 2-hydroxymyristoylcarnitine is elevated in the blood or plasma of individuals with CVD in type 2 diabetes mellitus (PMID: 32431666). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. A human metabolite taken as a putative food compound of mammalian origin [HMDB]

   

3-Hydroxytetradecanoyl carnitine

3-[(3-Hydroxytetradecanoyl)oxy]-4-(trimethylammonio)butanoic acid

C21H41NO5 (387.29845760000006)


3-Hydroxytetradecanoyl carnitine is an acylcarnitine. More specifically, it is an 3-hydroxytetradecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxytetradecanoyl carnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-hydroxytetradecanoyl carnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 3-hydroxytetradecanoyl carnitine is elevated in the blood or plasma of individuals with CVD in type 2 diabetes mellitus (PMID: 32431666). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Palmitoyl Methionine

2-(Hexadecanoylamino)-4-methylsulphanylbutanoic acid

C21H41NO3S (387.28069960000005)


N-palmitoyl methionine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Palmitic acid amide of Methionine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Palmitoyl Methionine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Palmitoyl Methionine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Stearoyl Cysteine

L-Cysteine, N-(1-oxooctadecyl)-, hydrochloride

C21H41NO3S (387.28069960000005)


N-stearoyl cysteine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Stearic acid amide of Cysteine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Stearoyl Cysteine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Stearoyl Cysteine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

Deoxyspergualin

N-[({4-[(3-aminopropyl)amino]butyl}-C-hydroxycarbonimidoyl)(hydroxy)methyl]-7-carbamimidamidoheptanimidate

C17H37N7O3 (387.2957732)


   

(8R,9R,10R,13S,14S)-3-[2-(Diethylamino)ethoxy]-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-one

(8R,9R,10R,13S,14S)-3-[2-(Diethylamino)ethoxy]-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-one

C25H41NO2 (387.31371260000003)


   

Tresperimus

(4-((3-Aminopropyl)amino)butyl)-2-((6-((aminoiminomethyl)amino)hexyl)amino)-2-oxoethyl carbamic acid ester, trihydrochloride

C17H37N7O3 (387.2957732)


   

Mycestericin F

[S-(R*,R*)]-2-Amino-3-hydroxy-2-(hydroxymethyl)-14-oxo-eicosanoic acid

C21H41NO5 (387.29845760000006)


   

Mycestericin G

[R-(R*,S*)]-2-Amino-3-hydroxy-2-(hydroxymethyl)-14-oxo-eicosanoic acid

C21H41NO5 (387.29845760000006)


   

(E)-3-(12-Heneicosenyl)-1H-pyrrole-2-carboxaldehyde

(E)-3-(12-Heneicosenyl)-1H-pyrrole-2-carboxaldehyde

C26H45NO (387.350096)


   
   
   
   

(9beta,16alpha,20R)-16-hydroxy-4,4,14-trimethyl-20-(methylamino)-9,19-cyclopregnane-3-one

(9beta,16alpha,20R)-16-hydroxy-4,4,14-trimethyl-20-(methylamino)-9,19-cyclopregnane-3-one

C25H41NO2 (387.31371260000003)


   

2-(12-Hydroxy-12-methyltridecyl)-3-methoxyquinolin-4(1H)-one

2-(12-Hydroxy-12-methyltridecyl)-3-methoxyquinolin-4(1H)-one

C24H37NO3 (387.27732920000005)


   
   

(6Z)-5-(6-heneicosenyl)pyrrole-2-carboxaldehyde

(6Z)-5-(6-heneicosenyl)pyrrole-2-carboxaldehyde

C26H45NO (387.350096)


   

Gusperimus

Gusperimus

C17H37N7O3 (387.2957732)


L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants D020011 - Protective Agents > D011837 - Radiation-Protective Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D000970 - Antineoplastic Agents D007004 - Hypoglycemic Agents

   
   
   
   

U-18666A

3b-[2-(diethylamino)ethoxy]-androst-5-en-17-one, monohydrochloride

C25H41NO2 (387.31371260000003)


   

25-Azacholesterol

25-Azacholesterol

C26H45NO (387.350096)


   
   

3,5-didecanoylpyridine

1,1'-(3,5-Pyridinediyl)bis-1-decanone, 9CI

C25H41NO2 (387.31371260000003)


   

Type IV cyanolipid 20:2 ester

(1-cyano-2-methylprop-2-en-1-yl) 11Z,14Z-eicosadienoate

C25H41NO2 (387.31371260000003)


   

Type III cyanolipid 20:2 ester

11Z,14Z-eicosadienoic acid, 3-cyano-2-methyl-2-propen-1-yl ester

C25H41NO2 (387.31371260000003)


   

CAR 14:0;O

3-[(3-hydroxytetradecanoyl)oxy]-4-(trimethylammonio)butanoate;3-hydroxymyristoylcarnitine

C21H41NO5 (387.29845760000006)


   

EDP-EA

N-(19(20)-epoxy-4Z,7Z,13Z,16Z-docosapentaenoyl)-ethanolamine

C24H37NO3 (387.27732920000005)


   

13-HDHEA

N-(13-hydroxy-4Z,7Z,10Z,14E,16Z,19Z-docosahexaenoyl)-ethanolamine

C24H37NO3 (387.27732920000005)


   

16-HDHEA

N-(16-hydroxy-4Z,7Z,10Z,13Z,17E,19Z-docosahexaenoyl)-ethanolamine

C24H37NO3 (387.27732920000005)


   

octadecenoic acid, compound with 2,2-iminodiethanol (1:1)

octadecenoic acid, compound with 2,2-iminodiethanol (1:1)

C22H45NO4 (387.33484100000004)


   
   

(3β)-(3-2H)Cholest-5-en-3-ol

(3β)-(3-2H)Cholest-5-en-3-ol

C27H45DO (387.361123778)


   

N-(dodecylphenyl)naphthalen-1-amine

N-(dodecylphenyl)naphthalen-1-amine

C28H37N (387.2925842)


   

TETRA-N-BUTYLAMMONIUM PHENYLTRIFLUOROBORATE

TETRA-N-BUTYLAMMONIUM PHENYLTRIFLUOROBORATE

C22H41BF3N (387.32839720000004)


   

glycerides mixed decanoyl and octanoyl

glycerides mixed decanoyl and octanoyl

C21H39O6- (387.2746494)


   
   

Tresperimus

Tresperimus

C17H37N7O3 (387.2957732)


C308 - Immunotherapeutic Agent > C574 - Immunosuppressant

   

POLYOXYETHYLENE(5) OLEYLAMINE ETHER

POLYOXYETHYLENE(5) OLEYLAMINE ETHER

C22H45NO4 (387.33484100000004)


   

Deoxyspergualin

Deoxyspergualin

C17H37N7O3 (387.2957732)


D020011 - Protective Agents > D011837 - Radiation-Protective Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000970 - Antineoplastic Agents D007004 - Hypoglycemic Agents

   

3beta-(2-(Diethylamino)ethoxy)androst-5-en-17-one

3beta-(2-(Diethylamino)ethoxy)androst-5-en-17-one

C25H41NO2 (387.31371260000003)


   
   
   
   
   

(2S)-6-amino-2-[[(2S,3S)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-methylpentanoyl]amino]hexanoic acid

(2S)-6-amino-2-[[(2S,3S)-2-[[(2S)-2,6-diaminohexanoyl]amino]-3-methylpentanoyl]amino]hexanoic acid

C18H37N5O4 (387.28454020000004)


   

(11Z,14Z,17Z,20Z)-hexacosatetraenoate

(11Z,14Z,17Z,20Z)-hexacosatetraenoate

C26H43O2- (387.3262878)


A polyunsaturated fatty acid anion that is the conjugate base of (11Z,14Z,17Z,20Z)-hexacosatetraenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

15-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]pentadecanoate

15-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]pentadecanoate

C21H39O6- (387.2746494)


   

(14R)-14-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxypentadecanoate

(14R)-14-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxypentadecanoate

C21H39O6- (387.2746494)


   
   
   
   

3-hydroxytetradecanoylcarnitine

3-hydroxytetradecanoylcarnitine

C21H41NO5 (387.29845760000006)


An O-acylcarnitine having 3-hydroxytetradecanoyl as the acyl substituent.

   

3-[2-(Diethylamino)ethoxy]-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-one

3-[2-(Diethylamino)ethoxy]-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-one

C25H41NO2 (387.31371260000003)


   

hexacosatetraenoate

hexacosatetraenoate

C26H43O2 (387.3262878)


A polyunsaturated fatty acid anion that is the conjugate base of hexacosatetraenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

ascr#26(1-)

ascr#26(1-)

C21H39O6 (387.2746494)


Conjugate base of ascr#26

   

oscr#26(1-)

oscr#26(1-)

C21H39O6 (387.2746494)


A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#26, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

CarE(14:0)

CarE(14:0(1+O))

C21H41NO5 (387.29845760000006)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved