Exact Mass: 368.2593
Exact Mass Matches: 368.2593
Found 139 metabolites which its exact mass value is equals to given mass value 368.2593
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Carboprost Tromethamine
Carboprost Tromethamine is only found in individuals that have used or taken this drug. It is a nonsteroidal abortifacient agent that is effective in both the first and second trimesters of pregnancy. [PubChem]Carboprost is a synthetic prostaglandin. It binds the prostaglandin E2 receptor, causing myometrial contractions, casuing the induction of labour or the expulsion of the placenta. Prostaglandins occur naturally in the body and act at several sites in the body including the womb (uterus). They act on the muscles of the womb, causing them to contract. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue
gamma-Eudesmol rhamnoside
gamma-Eudesmol rhamnoside is a constituent of fruits of Cananga odorata (ylang ylang). Constituent of fruits of Cananga odorata (ylang ylang)
beta-Cortol
beta-Cortol is a normal androgen metabolite present in adults. It has been found in the urine of infants as well. Beta-Cortol is the 5b enantiomer of beta-allocortol. Beta-cortol levels are significantly higher in premenopausal women with leiomyomas than in age-matched healthy premenopausal control women. Uterine leiomyomas are tumors closely associated with estrogen levels and it has been noted that the development of leiomyomas depends on the condition of menstruation, perimenopause and pregnancy. (PMID: 14698830, 14616886, 14643447, 15635046, 14709852) [HMDB] beta-Cortol is a normal androgen metabolite present in adults. It has been found in the urine of infants as well. beta-Cortol is the 5beta enantiomer of beta-allocortol. beta-Cortol levels are significantly higher in premenopausal women with leiomyomas than in age-matched healthy premenopausal control women. Uterine leiomyomas are tumours closely associated with estrogen levels and it has been noted that the development of leiomyomas depends on the condition of menstruation, perimenopause, and pregnancy (PMID: 14698830, 14616886, 14643447, 15635046, 14709852).
Prostaglandin F2alpha methyl ester
Proterguride
MG(18:2(10E,12Z)+=O(9)/0:0/0:0)
MG(18:2(10E,12Z)+=O(9)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(18:2(9Z,11E)+=O(13)/0:0/0:0)
MG(18:2(9Z,11E)+=O(13)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(18:3(10,12,15)-OH(9)/0:0/0:0)
MG(18:3(10,12,15)-OH(9)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(18:3(9,11,15)-OH(13)/0:0/0:0)
MG(18:3(9,11,15)-OH(13)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/18:2(10E,12Z)+=O(9)/0:0)
MG(0:0/18:2(10E,12Z)+=O(9)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/18:2(9Z,11E)+=O(13)/0:0)
MG(0:0/18:2(9Z,11E)+=O(13)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/18:3(10,12,15)-OH(9)/0:0)
MG(0:0/18:3(10,12,15)-OH(9)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/18:3(9,11,15)-OH(13)/0:0)
MG(0:0/18:3(9,11,15)-OH(13)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
Tomentogenin|Tomentogenin (5alpha-Dihydro-utendin)
(1beta,4alpha,5beta,6alpha,7alpha,10alpha)-10-Aromadendranol
tetrahydro-2-(14-hydroxypentadecyl)-4-methylene-5-oxo-3-furancarboxylic acid
methyl-2alpha,3alpha,9beta-trihydroxy-9-epi-labd-13(E)-en-15-oate
(-)-dihydropertusaric acid|(-)589-Pertusarinic acid|(2S,3S,4S)-2,3,4,5-tetrahydro-4-methyl-5-oxo-2-(14-oxopentadecyl)furan-3-carboxylic acid|(3S,4S,5S)-4-carboxy-3-methyl-2-oxo-5-(14-oxopentadecyl)tetrahydrofuran
3-hydroxy-2-(hydroxymethyl)-4-(14-methylpentadecanoyl)-2H-furan-5-one
agallochin M|methyl ent-13-epi-8,13-epoxy-4,6alpha-dihydroxy-3,4-secolabd-14-en-3-oate
(-)-PGE1 methyl ester|(-)-prostaglandin E1 methyl ester|methyl 7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxy-1-octenyl]-5-oxocyclopentyl]heptanoate|Methyl prostaglandin E1|PGE1 methyl ester|prostaglandin E1 methyl ester
(2S)-1-O-(9-oxo-10(E),12(E)-octadecadienoyl) glycerol
(4S,5S,7R,10S)-Eudesm-11-en-4-ol beta-D-fucopyranoside
Carboprost
G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue
gamma-Eudesmol rhamnoside
Urea, N-[2-(1H-benzimidazol-2-yl)ethyl]-N,N-dicyclohexyl- (9CI)
4-((5,6-diphenylpyrazin-2-yl)(perdeutero-propan-2-yl)amino)butan-1-ol
(16S,20S)-Pregnan-3beta,5alpha,6beta,16,20-pentaol
(3R,17R)-17-(1,2-dihydroxyethyl)-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,14,15,16-tetradecahydrocyclopenta[a]phenanthrene-3,11,17-triol
Prost-13-en-1-oic acid, 11,16-dihydroxy-16-methyl-9-oxo-, (11alpha,13E)-(+-)-
[(2S)-2,3-dihydroxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate
[(2S)-2,3-dihydroxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate
1,3-dihydroxypropan-2-yl (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate
1,3-dihydroxypropan-2-yl (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate
Hinesol beta-D-fucopyranoside, (rel)-
A natural product found in Carthamus oxyacantha.
5-(Hydroxymethyl)-3-(1-oxohexadecyl)oxolane-2,4-dione
3-Methyl-6-nonyl-6-(tetrahydro-2H-pyran-2-yloxymethyl)tetrahydro-2H-pyran-2,4-dione
(1-acetyloxy-3-hydroxypropan-2-yl) (9Z,12Z)-hexadeca-9,12-dienoate
(2R)-2-[(14S)-14-hydroxypentadecyl]-4-methylidene-5-oxooxolane-3-carboxylic acid
(2r)-2,3-dihydroxypropyl (10e,12z)-9-oxooctadeca-10,12-dienoate
(2r,3s)-2-[(14r)-14-hydroxypentadecyl]-4-methylidene-5-oxooxolane-3-carboxylic acid
(2s)-2,3-dihydroxypropyl 9-oxooctadeca-10,12-dienoate
(2s,3s)-2-[(14r)-14-hydroxypentadecyl]-4-methylidene-5-oxooxolane-3-carboxylic acid
4-hydroxy-5-(hydroxymethyl)-3-(14-methylpentadecanoyl)-5h-furan-2-one
(2s,3r,4s,5r,6r)-2-({2-[(2r,4as)-4a,8-dimethyl-2,3,4,5,6,7-hexahydro-1h-naphthalen-2-yl]propan-2-yl}oxy)-6-methyloxane-3,4,5-triol
agallochin m
{"Ingredient_id": "HBIN014811","Ingredient_name": "agallochin m","Alias": "NA","Ingredient_formula": "C21H36O5","Ingredient_Smile": "CC1(CCC2C(O1)(CC(C(C2(C)CCC(=O)OC)C(C)(C)O)O)C)C=C","Ingredient_weight": "368.5 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "693","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101232173","DrugBank_id": "NA"}
alpha-bisabolol beta-d-fucopyranoside
{"Ingredient_id": "HBIN015411","Ingredient_name": "alpha-bisabolol beta-d-fucopyranoside ","Alias": "NA","Ingredient_formula": "C21H36O5","Ingredient_Smile": "CC1C(C(C(C(O1)OC(C)(CCC=C(C)C)C2CCC(=CC2)C)O)O)O","Ingredient_weight": "368.5 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "19480","PubChem_id": "102286643","DrugBank_id": "NA"}