Exact Mass: 367.2022
Exact Mass Matches: 367.2022
Found 79 metabolites which its exact mass value is equals to given mass value 367.2022
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Bambuterol
Bambuterol is only found in individuals that have used or taken this drug. It is a long acting beta-adrenoceptor agonist used in the treatment of asthma. It is a prodrug of terbutaline.The pharmacologic effects of bambuterol are at least in part attributable to stimulation through beta-adrenergic receptors (beta 2 receptors) of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic AMP. Increased cyclic AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
Dodeca-6,8,10-trienedioylcarnitine
Dodeca-6,8,10-trienedioylcarnitine is an acylcarnitine. More specifically, it is an dodeca-6,8,10-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Dodeca-6,8,10-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Dodeca-6,8,10-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Dodeca-4,7,10-trienedioylcarnitine
Dodeca-4,7,10-trienedioylcarnitine is an acylcarnitine. More specifically, it is an dodeca-4,7,10-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Dodeca-4,7,10-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Dodeca-4,7,10-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E,6E,8E)-Dodeca-2,6,8-trienedioylcarnitine
(2E,6E,8E)-Dodeca-2,6,8-trienedioylcarnitine is an acylcarnitine. More specifically, it is an (2E,6E,8E)-dodeca-2,6,8-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E,6E,8E)-Dodeca-2,6,8-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E,6E,8E)-Dodeca-2,6,8-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Dodeca-5,7,9-trienedioylcarnitine
Dodeca-5,7,9-trienedioylcarnitine is an acylcarnitine. More specifically, it is an dodeca-5,7,9-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Dodeca-5,7,9-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Dodeca-5,7,9-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Dodeca-4,6,8-trienedioylcarnitine
Dodeca-4,6,8-trienedioylcarnitine is an acylcarnitine. More specifically, it is an dodeca-4,6,8-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Dodeca-4,6,8-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Dodeca-4,6,8-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Dodeca-3,6,9-trienedioylcarnitine
Dodeca-3,6,9-trienedioylcarnitine is an acylcarnitine. More specifically, it is an dodeca-3,6,9-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Dodeca-3,6,9-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Dodeca-3,6,9-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
12-hydroxy-4,19-dimethyl-(13betaH,14betaH)-14,19-dihydro-4,8-seco-crotalanane-8,11,15-trione|8,12-dihydroxy-4alpha,19-dimethyl-11,15-dioxo-(13betaH,14betaH)-14,19-dihydro-crotalananium betaine|Crosemperin|crosemperine
Bambuterol
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
N,N-BIS(2-HYDROXYETHYL)-N-METHYLDODECAN-1-AMINIUM BROMIDE
4-(3-(3-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PHENYL)PROPYL)MORPHOLINE HYDROCHLORIDE
butyl prop-2-enoate,methyl 2-methylprop-2-enoate,2-methylprop-2-enoic acid,prop-2-enenitrile
1,4-divinylbenzene,isocyanatomethylbenzene,styrene
ETHYL 2-AMINO-5-((7-ETHOXY-7-OXOHEPTYL)OXY)-4-METHOXYBENZOATE
2,6-Difluoro-3,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine
2-amino-N-cyclopentyl-1-(3-methoxypropyl)-1H-pyrrolo[2,3-b]quinoxaline-3-carboxamide
D020536 - Enzyme Activators
16-Methoxytabersoninium(1+)
Conjugate acid of 16-methoxytabersonine arising from protonation of the endocyclic tertiary amino group.
(5Z,9S,11R,13E,15S)-15-hydroperoxy-9,11-epidioxyprosta-5,13-dien-1-oate
2-[4-[(2R)-2-[(3S,5S)-3,5-dimethyl-2-oxocyclohexyl]-2-hydroxyethyl]-2,6-dioxo-1-piperidinyl]acetic acid ethyl ester
19-hydroxyprostaglandin H2(1-)
A prostaglandin carboxylic acid anion that is the conjugate base of 19-hydroxyprostaglandin H2, obtained by deprotonation of the carboxy group; major species at pH 7.3.
2-[(6-methoxy-4-methylquinazolin-2-yl)amino]-6-methyl-5-(3-methylbutyl)pyrimidin-4(3H)-one
20-hydroxylipoxin A4(1-)
A lipoxin anion that is the conjugate base of 20-hydroxylipoxin A4 arising from deprotonation of the carboxylic acid function; major species at pH 7.3.
20-hydroxylipoxin B4(1-)
A lipoxin anion that is the conjugate base of 20-hydroxy-lipoxin B4 arising from deprotonation of the carboxylic acid function; major species at pH 7.3.
(3R,3aS,7R,7aS)-7-methyl-3-(2-naphthalenyl)-2-(phenylmethyl)-3a,6,7,7a-tetrahydro-3H-isoindol-1-one
11-dehydro-thromboxane B2(1-)
A thromboxane anion that is the conjugate base of 11-dehydro-thromboxane B2, obtained by deprotonation of the carboxy group; major species at pH 7.3.
1-[1-(Phenylmethyl)-4-piperidinyl]-3-(2-propan-2-ylphenyl)thiourea
(5Z,13E,15S)-9alpha,11alpha-epoxy-15,19-dihydroxythromboxa-5,13-dien-1-oate
(5Z,13E,15S)-9alpha,11alpha-epoxy-15,18-dihydroxythromboxa-5,13-dien-1-oate
(5Z,13E,15S)-11alpha,15,19-trihydroxy-6,9alpha-epoxyprosta-5,13-dien-1-oate
(5Z,8S,9E,11Z,13E,15S)-8,15-bis(hydroperoxy)icosa-5,9,11,13-tetraenoate
(5S,6E,8Z,11Z,13E,15S)-5,15-bis(hydroperoxy)icosa-6,8,11,13-tetraenoate
(5Z,8Z,10E,12E,14R,15S)-14,15-bis(hydroperoxy)icosa-5,8,10,12-tetraenoate
(5S,6R,7E,9E,11Z,13E,15S)-15-hydroperoxy-5,6-dihydroxyicosa-7,9,11,13-tetraenoate
3-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl]-1H-imidazol-3-ium
N-[9-(2-carboxyethyl)-6-(ethylamino)-2,7-dimethyl-3H-xanthen-3-ylidene]ethanaminium
(13E,15S)-11alpha,15-dihydroxy-6,9-dioxoprost-13-en-1-oate
(5S,6Z,8E,10E,12R,14Z)-5,12,20,20-tetrahydroxyicosa-6,8,10,14-tetraenoate
2-[[(E)-2-acetamido-3-hydroxyoct-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
prostaglandin G2(1-)
A prostaglandin carboxylic acid anion that is the conjugate base of prostaglandin G2, obtained by deprotonation of the carboxy group; major species at pH 7.3.
19-hydroxythromboxane A2(1-)
A thromboxane anion that is the conjugate base of 19-hydroxythromboxane A2, obtained by deprotonation of the carboxy group; major species at pH 7.3.
18-hydroxythromboxane A2(1-)
A thromboxane anion that is the conjugate base of 18-hydroxythromboxane A2, obtained by deprotonation of the carboxy group; major species at pH 7.3.
(5S,15S)-dihydroperoxy-(6E,8Z,11Z,13E)-icosatetraenoate
A bis(hydroperoxy)icosatetraenoate that is the conjugate base of (5S,15S)-dihydroperoxy-(6E,8Z,11Z,13E)-icosatetraenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
6-oxoprostaglandin E1(1-)
A prostaglandin carboxylic acid anion that is the conjugate base of 6-oxoprostaglandin E1, obtained by deprotonation of the carboxy group; major species at pH 7.3.
8(S),15(S)-DiHPETE(1-)
An icosanoid anion that is the conjugate base of 8(S),15(S)-DiHPETE, obtained by deprotonation of the carboxy group; major species at pH 7.3.
14(R),15(S)-DiHPETE(1-)
A bis(hydroperoxy)icosatetraenoate that is the conjugate base of 14(R),15(S)-DiHPETE, obtained by deprotonation of the carboxy group; major species at pH 7.3.
(5S,6R)-dihydroxy-(15S)-hydroperoxy-(7E,9E,11Z,13E)-icosatetraenoate
An hydroperoxy(hydroxy)icosatetraenoate that is the conjugate base of (5S,6R)-dihydroxy-(15S)-hydroperoxy-(7E,9E,11Z,13E)-icosatetraenoic acid; major species at pH 7.3.
19-hydroxyprostaglandin I2(1-)
A prostaglandin carboxylic acid anion that is the conjugate base of 19-hydroxyprostaglandin I2, obtained by deprotonation of the carboxy group; major species at pH 7.3.