Exact Mass: 359.2436

Exact Mass Matches: 359.2436

Found 124 metabolites which its exact mass value is equals to given mass value 359.2436, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

napelline

(1R,2R,4S,5S,7R,8R,9R,13R,16S,17R)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


LSM-1634 is a kaurane diterpenoid. Napelline is a natural product found in Aconitum karakolicum, Aconitum baicalense, and other organisms with data available. 12-Epinapelline is a kaurane diterpenoid. 12-Epinapelline is a natural product found in Aconitum napellus, Delphinium leroyi, and other organisms with data available. Annotation level-1 12-Epinapelline is a diterpene alkaloid isolated from Aconitum baikalense. 12-Epinapelline exhibits Anti-inflammatory activity and stimulates the growth of colonies from fibroblast precursors[1][2]. 12-Epinapelline is a diterpene alkaloid isolated from Aconitum baikalense. 12-Epinapelline exhibits Anti-inflammatory activity and stimulates the growth of colonies from fibroblast precursors[1][2].

   

AJACONINE

7alpha,20-epoxy-21-(2-hydroxyethyl)-4-methylatid-16-en-15beta-ol

C22H33NO3 (359.246)


   

N-Palmitoyl Cysteine

tetradeca-2,4-dienedioic acid

C19H37NO3S (359.2494)


N-palmitoyl cysteine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Palmitic acid amide of Cysteine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Palmitoyl Cysteine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Palmitoyl Cysteine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Myristoyl Methionine

2-[(1-Hydroxytetradecylidene)amino]-4-(methylsulphanyl)butanoic acid

C19H37NO3S (359.2494)


N-myristoyl methionine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Methionine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Methionine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Methionine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Eicosapentaenoyl Glycine

2-(icosa-5,8,11,14,17-pentaenamido)acetic acid

C22H33NO3 (359.246)


N-eicosapentaenoyl glycine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Eicosapentaenoic acid amide of Glycine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Eicosapentaenoyl Glycine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Eicosapentaenoyl Glycine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

Spiramine G

Spiramine G

C22H33NO3 (359.246)


   

Spiramine H

Spiramine H

C22H33NO3 (359.246)


   
   

Oxaloterpin D

Oxaloterpin D

C22H33NO3 (359.246)


   

Spiratine A

Spiratine A

C22H33NO3 (359.246)


   

11alpha-Hydroxylepenine

11alpha-Hydroxylepenine

C22H33NO3 (359.246)


   

Spiraeaine A

Spiraeaine A

C22H33NO3 (359.246)


   
   

Spiramine N

Spiramine N

C22H33NO3 (359.246)


   

Corumdizinine

Corumdizinine

C22H33NO3 (359.246)


   
   

Dapholdhamine A

Dapholdhamine A

C22H33NO3 (359.246)


   

Oxoisoatisine

Oxoisoatisine

C22H33NO3 (359.246)


   

8-Deoxy-14-dehydro-aconosine

8-Deoxy-14-dehydro-aconosine

C22H33NO3 (359.246)


   

7alpha-Hydroxyparavallarine

7alpha-Hydroxyparavallarine

C22H33NO3 (359.246)


A natural product found in Kibatalia laurifolia.

   

calycinumines B

calycinumines B

C22H33NO3 (359.246)


   

dehydroretrofractamide C

dehydroretrofractamide C

C22H33NO3 (359.246)


   

11alpha-Hydroxyparavallarine

11alpha-Hydroxyparavallarine

C22H33NO3 (359.246)


   
   

SCHEMBL17867016

SCHEMBL17867016

C17H33N3O5 (359.242)


   

16alpha-Hydroxy;B,HCl-Paravallarine

16alpha-Hydroxy;B,HCl-Paravallarine

C22H33NO3 (359.246)


   
   

1-dehydroxy-1,2-dehydrokaracoline|delpoline

1-dehydroxy-1,2-dehydrokaracoline|delpoline

C22H33NO3 (359.246)


   
   
   
   
   
   
   
   
   
   

MLS002153959-01!Napelline5008-52-6

MLS002153959-01!Napelline5008-52-6

C22H33NO3 (359.246)


   

Luciculine

Luciculine

C22H33NO3 (359.246)


Origin: Plant; Formula(Parent): C22H33NO3; Bottle Name:Napelline; PRIME Parent Name:Napelline; PRIME in-house No.:V0349; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid

   

Cyclomethycaine

3-(2-methylpiperidin-1-yl)propyl 4-cyclohexyloxybenzoate

C22H33NO3 (359.246)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

S-Palmitoyl-L-cysteine

S-Palmitoyl-L-cysteine

C19H37NO3S (359.2494)


   

L-Cysteine, N-(1-oxohexadecyl)-

L-Cysteine, N-(1-oxohexadecyl)-

C19H37NO3S (359.2494)


   

N-Eicosapentaenoyl Glycine

N-Eicosapentaenoyl Glycine

C22H33NO3 (359.246)


   

CID 6852278

CID 6852278

C22H33NO3 (359.246)


   

13-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]tridecanoate

13-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]tridecanoate

C19H35O6- (359.2434)


   

(12R)-12-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxytridecanoate

(12R)-12-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxytridecanoate

C19H35O6- (359.2434)


   

(1R,2R,4S,5S,7R,8R,9R,10S,13R,16S,17R)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

(1R,2R,4S,5S,7R,8R,9R,10S,13R,16S,17R)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

(1R,2R,4S,5S,7R,8R,9R,10R,13R,16S,17R)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

(1R,2R,4S,5S,7R,8R,9R,10R,13R,16S,17R)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

(1R,2S,4S,5S,7R,8R,9R,10R,13R,16S,17S)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

(1R,2S,4S,5S,7R,8R,9R,10R,13R,16S,17S)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

(1R,4S,5S,7R,8R,9R,10R,13R,16S,17S)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

(1R,4S,5S,7R,8R,9R,10R,13R,16S,17S)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

oscr#22(1-)

oscr#22(1-)

C19H35O6 (359.2434)


A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#22, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

ascr#22(1-)

ascr#22(1-)

C19H35O6 (359.2434)


Conjugate base of ascr#22

   
   

NA-Gly 20:5(5Z,8Z,11Z,14Z,17Z)

NA-Gly 20:5(5Z,8Z,11Z,14Z,17Z)

C22H33NO3 (359.246)


   
   

NA-PABA 15:1(9Z)

NA-PABA 15:1(9Z)

C22H33NO3 (359.246)


   

11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

(1r,2s,5r,8r,9r,10s,11r,13r,14s,15r,16r)-7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecane-2,11,14-triol

(1r,2s,5r,8r,9r,10s,11r,13r,14s,15r,16r)-7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecane-2,11,14-triol

C22H33NO3 (359.246)


   

(3r,5s)-3-[(1r,2r,4as,8as)-2,3,6-trimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-4,5-dihydropyrrole-2,3-diol

(3r,5s)-3-[(1r,2r,4as,8as)-2,3,6-trimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-4,5-dihydropyrrole-2,3-diol

C22H33NO3 (359.246)


   

(1r,7r,10r,18s,22r,23s)-15-hydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricosan-4-one

(1r,7r,10r,18s,22r,23s)-15-hydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricosan-4-one

C22H33NO3 (359.246)


   

7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl carbamoylformate

7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl carbamoylformate

C22H33NO3 (359.246)


   

(1r,5r,6r,7r,8s,9r,13r,16s,17s)-11-ethyl-7,16-dihydroxy-6,13-dimethyl-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

(1r,5r,6r,7r,8s,9r,13r,16s,17s)-11-ethyl-7,16-dihydroxy-6,13-dimethyl-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one

C22H33NO3 (359.246)


   

(1s,5r,8r,10r,11s,14s,16r,17r)-7-(2-hydroxyethyl)-5-methyl-13-methylidene-9-oxa-7-azahexacyclo[8.6.2.2¹¹,¹⁴.0¹,⁸.0⁵,¹⁷.0¹¹,¹⁶]icosan-12-ol

(1s,5r,8r,10r,11s,14s,16r,17r)-7-(2-hydroxyethyl)-5-methyl-13-methylidene-9-oxa-7-azahexacyclo[8.6.2.2¹¹,¹⁴.0¹,⁸.0⁵,¹⁷.0¹¹,¹⁶]icosan-12-ol

C22H33NO3 (359.246)


   

(1s,2s,4s,5r,7r,8r,9s,10s,13s,16r,17s)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

(1s,2s,4s,5r,7r,8r,9s,10s,13s,16r,17s)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

(1s,2s,4s,6r,7s,10r,11r)-6-hydroxy-13-(2-hydroxyethyl)-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-8-one

(1s,2s,4s,6r,7s,10r,11r)-6-hydroxy-13-(2-hydroxyethyl)-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-8-one

C22H33NO3 (359.246)


   

2-{6,8-dihydroxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-13-yl}acetaldehyde

2-{6,8-dihydroxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-13-yl}acetaldehyde

C22H33NO3 (359.246)


   

(1r,5r,8r,10s,11r,14s,16r,17r,18s)-7-(2-hydroxyethyl)-5-methyl-13-methylidene-9-oxa-7-azahexacyclo[8.6.2.2¹¹,¹⁴.0¹,⁸.0⁵,¹⁷.0¹¹,¹⁶]icosan-18-ol

(1r,5r,8r,10s,11r,14s,16r,17r,18s)-7-(2-hydroxyethyl)-5-methyl-13-methylidene-9-oxa-7-azahexacyclo[8.6.2.2¹¹,¹⁴.0¹,⁸.0⁵,¹⁷.0¹¹,¹⁶]icosan-18-ol

C22H33NO3 (359.246)


   

11-ethyl-4,16-dihydroxy-6,13-dimethyl-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-7-one

11-ethyl-4,16-dihydroxy-6,13-dimethyl-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-7-one

C22H33NO3 (359.246)


   

(1s,2s,4r,7s,8r,10r,11r)-8-hydroxy-13-(2-hydroxyethyl)-11-methyl-19-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-6-one

(1s,2s,4r,7s,8r,10r,11r)-8-hydroxy-13-(2-hydroxyethyl)-11-methyl-19-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-6-one

C22H33NO3 (359.246)


   

8-deoxy-14-dehydro-aconosine

NA

C22H33NO3 (359.246)


{"Ingredient_id": "HBIN013704","Ingredient_name": "8-deoxy-14-dehydro-aconosine","Alias": "NA","Ingredient_formula": "C22H33NO3","Ingredient_Smile": "CCN1CC2CCC(C34C2CC(C31)C5CC(C6CC4C5C6=O)OC)OC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14994","TCMID_id": "5165","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

ajaconine

NA

C22H33NO3 (359.246)


{"Ingredient_id": "HBIN014950","Ingredient_name": "ajaconine","Alias": "NA","Ingredient_formula": "C22H33NO3","Ingredient_Smile": "CC12CCCC34C1CC(C56C3CC(CC5)C(=C)C6O)OC4N(C2)CCO","Ingredient_weight": "359.5 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "782","TCMSP_id": "NA","TCM_ID_id": "7099;19458;21460","PubChem_id": "133562510","DrugBank_id": "NA"}

   

(1s,5r,8s,9s,11r,13r,14s,15s,17r,18s)-7-(2-hydroxyethyl)-5-methyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-13,15-diol

(1s,5r,8s,9s,11r,13r,14s,15s,17r,18s)-7-(2-hydroxyethyl)-5-methyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-13,15-diol

C22H33NO3 (359.246)


   

(1r,2s,4s,6r,7r,8r,10s,11r,12r)-12-ethoxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadec-13-ene-6,8-diol

(1r,2s,4s,6r,7r,8r,10s,11r,12r)-12-ethoxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadec-13-ene-6,8-diol

C22H33NO3 (359.246)


   

12-ethyl-14-methyl-6-methylidene-12-azahexacyclo[8.7.1.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]nonadecane-4,7,17-triol

12-ethyl-14-methyl-6-methylidene-12-azahexacyclo[8.7.1.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]nonadecane-4,7,17-triol

C22H33NO3 (359.246)


   

(1s,2r,4s,5r,7r,8r,10s,11r,14r,17s,18r)-12-ethyl-14-methyl-6-methylidene-12-azahexacyclo[8.7.1.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]nonadecane-4,7,17-triol

(1s,2r,4s,5r,7r,8r,10s,11r,14r,17s,18r)-12-ethyl-14-methyl-6-methylidene-12-azahexacyclo[8.7.1.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]nonadecane-4,7,17-triol

C22H33NO3 (359.246)


   

(1s,2s,4s,6s,7r,8r,10r,11r)-13-[(1e)-2-hydroxyethenyl]-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecane-6,8-diol

(1s,2s,4s,6s,7r,8r,10r,11r)-13-[(1e)-2-hydroxyethenyl]-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecane-6,8-diol

C22H33NO3 (359.246)


   

(1r,2s,5r,9r,10s,11r,13r,14s,15r,16r)-7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecane-2,11,14-triol

(1r,2s,5r,9r,10s,11r,13r,14s,15r,16r)-7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecane-2,11,14-triol

C22H33NO3 (359.246)


   

2-[(1s,2s,4s,6s,7r,8r,10r,11r)-6,8-dihydroxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-13-yl]acetaldehyde

2-[(1s,2s,4s,6s,7r,8r,10r,11r)-6,8-dihydroxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-13-yl]acetaldehyde

C22H33NO3 (359.246)


   

(1r,2s,4s,6r,7s,10s,11r)-6-hydroxy-13-(2-hydroxyethyl)-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-12-one

(1r,2s,4s,6r,7s,10s,11r)-6-hydroxy-13-(2-hydroxyethyl)-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-12-one

C22H33NO3 (359.246)


   

(1r,2s,5r,8s,9r,10s,11r,13r,14s,15s,16r)-7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecane-2,11,14-triol

(1r,2s,5r,8s,9r,10s,11r,13r,14s,15s,16r)-7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecane-2,11,14-triol

C22H33NO3 (359.246)


   

(1s,2r,4r,7r,8s,9r,13s,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

(1s,2r,4r,7r,8s,9r,13s,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

(2s,3as,3bs,6s,6ar,7s,9ar,11ar)-7,8,11-trimethyl-6-(2-methylpropyl)-1h,2h,3h,6h,6ah,7h,9ah,11ah-indeno[5,4-d]isoindole-2,3a,4-triol

(2s,3as,3bs,6s,6ar,7s,9ar,11ar)-7,8,11-trimethyl-6-(2-methylpropyl)-1h,2h,3h,6h,6ah,7h,9ah,11ah-indeno[5,4-d]isoindole-2,3a,4-triol

C22H33NO3 (359.246)


   

7-(2-hydroxyethyl)-5-methyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-13,15-diol

7-(2-hydroxyethyl)-5-methyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-13,15-diol

C22H33NO3 (359.246)


   

(1s,2s,5s,6r,7s,10s,12r,16s)-7,8,12-trimethyl-5-(2-methylpropyl)-13-oxa-4-azapentacyclo[12.2.1.0²,⁶.0²,¹⁰.0¹²,¹⁶]heptadeca-3,8-diene-1,3-diol

(1s,2s,5s,6r,7s,10s,12r,16s)-7,8,12-trimethyl-5-(2-methylpropyl)-13-oxa-4-azapentacyclo[12.2.1.0²,⁶.0²,¹⁰.0¹²,¹⁶]heptadeca-3,8-diene-1,3-diol

C22H33NO3 (359.246)


   

(1s,2s,4r,7r,10r,11r,18s)-18-hydroxy-13-(2-hydroxyethyl)-11-methyl-19-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-6-one

(1s,2s,4r,7r,10r,11r,18s)-18-hydroxy-13-(2-hydroxyethyl)-11-methyl-19-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-6-one

C22H33NO3 (359.246)


   

1,11-dihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one

1,11-dihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one

C22H33NO3 (359.246)


   

3-[(1s,4r,5r,8r,9r,12s,13s,14s,18s)-8-hydroxy-5,9-dimethyl-11-azahexacyclo[9.6.1.0¹,¹⁴.0⁴,¹⁸.0⁵,¹³.0⁸,¹²]octadecan-13-yl]propanoic acid

3-[(1s,4r,5r,8r,9r,12s,13s,14s,18s)-8-hydroxy-5,9-dimethyl-11-azahexacyclo[9.6.1.0¹,¹⁴.0⁴,¹⁸.0⁵,¹³.0⁸,¹²]octadecan-13-yl]propanoic acid

C22H33NO3 (359.246)


   

(1r,2s,4r,5r,6s,8r,9r,10r,13r,16s,17r)-11-ethyl-4,16-dihydroxy-6,13-dimethyl-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-7-one

(1r,2s,4r,5r,6s,8r,9r,10r,13r,16s,17r)-11-ethyl-4,16-dihydroxy-6,13-dimethyl-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-7-one

C22H33NO3 (359.246)


   

(1s,3e,5s,10r)-15-ethyl-1,5-dihydroxy-3,17,17-trimethyl-7-methylidene-15-azatricyclo[8.5.2.0¹³,¹⁶]heptadeca-3,13(16)-dien-14-one

(1s,3e,5s,10r)-15-ethyl-1,5-dihydroxy-3,17,17-trimethyl-7-methylidene-15-azatricyclo[8.5.2.0¹³,¹⁶]heptadeca-3,13(16)-dien-14-one

C22H33NO3 (359.246)


   

(1s,5r,8r,9s,11r,13r,14s,15s,17r,18s)-7-(2-hydroxyethyl)-5-methyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-13,15-diol

(1s,5r,8r,9s,11r,13r,14s,15s,17r,18s)-7-(2-hydroxyethyl)-5-methyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-13,15-diol

C22H33NO3 (359.246)


   

(1r,4s,5s,7r,8r,9r,10r,13r,16s)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

(1r,4s,5s,7r,8r,9r,10r,13r,16s)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

7,8,12-trimethyl-5-(2-methylpropyl)-13-oxa-4-azapentacyclo[12.2.1.0²,⁶.0²,¹⁰.0¹²,¹⁶]heptadeca-3,8-diene-1,3-diol

7,8,12-trimethyl-5-(2-methylpropyl)-13-oxa-4-azapentacyclo[12.2.1.0²,⁶.0²,¹⁰.0¹²,¹⁶]heptadeca-3,8-diene-1,3-diol

C22H33NO3 (359.246)


   

2,2,2-trifluoro-1-[2-methyl-3-(tridec-5-en-1-yl)-4,5-dihydropyrrol-1-yl]ethanone

2,2,2-trifluoro-1-[2-methyl-3-(tridec-5-en-1-yl)-4,5-dihydropyrrol-1-yl]ethanone

C20H32F3NO (359.2436)


   

7,8,11-trimethyl-6-(2-methylpropyl)-1h,2h,3h,6h,6ah,7h,9ah,11ah-indeno[5,4-d]isoindole-2,3a,4-triol

7,8,11-trimethyl-6-(2-methylpropyl)-1h,2h,3h,6h,6ah,7h,9ah,11ah-indeno[5,4-d]isoindole-2,3a,4-triol

C22H33NO3 (359.246)


   

(1r,2s,4r,5r,7r,8r,9r,10r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

(1r,2s,4r,5r,7r,8r,9r,10r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

(3s,3ar,4s,6as,11s,13ar)-1,11-dihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one

(3s,3ar,4s,6as,11s,13ar)-1,11-dihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one

C22H33NO3 (359.246)


   

(2r,4ar,7s,8as,10as)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl carbamoylformate

(2r,4ar,7s,8as,10as)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl carbamoylformate

C22H33NO3 (359.246)


   

(3s,5s)-3-[(1s,2s,4ar,8ar)-2,3,6-trimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-4,5-dihydropyrrole-2,3-diol

(3s,5s)-3-[(1s,2s,4ar,8ar)-2,3,6-trimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-4,5-dihydropyrrole-2,3-diol

C22H33NO3 (359.246)


   

(1r,2r,4s,5r,7r,8r,9r,10r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

(1r,2r,4s,5r,7r,8r,9r,10r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

(1s,5r,8r,10r,11s,12r,14s,16r,17r)-7-(2-hydroxyethyl)-5-methyl-13-methylidene-9-oxa-7-azahexacyclo[8.6.2.2¹¹,¹⁴.0¹,⁸.0⁵,¹⁷.0¹¹,¹⁶]icosan-12-ol

(1s,5r,8r,10r,11s,12r,14s,16r,17r)-7-(2-hydroxyethyl)-5-methyl-13-methylidene-9-oxa-7-azahexacyclo[8.6.2.2¹¹,¹⁴.0¹,⁸.0⁵,¹⁷.0¹¹,¹⁶]icosan-12-ol

C22H33NO3 (359.246)


   

8-hydroxy-13-(2-hydroxyethyl)-11-methyl-19-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-6-one

8-hydroxy-13-(2-hydroxyethyl)-11-methyl-19-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-6-one

C22H33NO3 (359.246)


   

2,2,2-trifluoro-1-{2-methyl-3-[(5z)-tridec-5-en-1-yl]-4,5-dihydropyrrol-1-yl}ethanone

2,2,2-trifluoro-1-{2-methyl-3-[(5z)-tridec-5-en-1-yl]-4,5-dihydropyrrol-1-yl}ethanone

C20H32F3NO (359.2436)


   

(2r,4r,5r,7r,8r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

(2r,4r,5r,7r,8r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

(3s,3ar,4s,6as,11r,13ar)-1,11-dihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one

(3s,3ar,4s,6as,11r,13ar)-1,11-dihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one

C22H33NO3 (359.246)


   

(3s,5s)-3-[(1s,2r,4as,8ar)-2,3,6-trimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-4,5-dihydropyrrole-2,3-diol

(3s,5s)-3-[(1s,2r,4as,8ar)-2,3,6-trimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-4,5-dihydropyrrole-2,3-diol

C22H33NO3 (359.246)


   

(2s,3as,3bs,6s,6ar,7s,9as,11ar)-7,8-dimethyl-11-methylidene-6-(2-methylpropyl)-1h,2h,3h,6h,6ah,7h,9ah,10h,11ah-indeno[5,4-d]isoindole-2,3a,4-triol

(2s,3as,3bs,6s,6ar,7s,9as,11ar)-7,8-dimethyl-11-methylidene-6-(2-methylpropyl)-1h,2h,3h,6h,6ah,7h,9ah,10h,11ah-indeno[5,4-d]isoindole-2,3a,4-triol

C22H33NO3 (359.246)


   

(3s,5s)-3-[(1r,2r,4as,8as)-2,3,6-trimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-4,5-dihydropyrrole-2,3-diol

(3s,5s)-3-[(1r,2r,4as,8as)-2,3,6-trimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-4,5-dihydropyrrole-2,3-diol

C22H33NO3 (359.246)


   

15-ethyl-1,5-dihydroxy-3,17,17-trimethyl-7-methylidene-15-azatricyclo[8.5.2.0¹³,¹⁶]heptadeca-3,13(16)-dien-14-one

15-ethyl-1,5-dihydroxy-3,17,17-trimethyl-7-methylidene-15-azatricyclo[8.5.2.0¹³,¹⁶]heptadeca-3,13(16)-dien-14-one

C22H33NO3 (359.246)


   

2-[(1s,2r,4s,6s,7r,8r,10s,11r)-6,8-dihydroxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-13-yl]acetaldehyde

2-[(1s,2r,4s,6s,7r,8r,10s,11r)-6,8-dihydroxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-13-yl]acetaldehyde

C22H33NO3 (359.246)


   

3-[(1r,2r,7s,10r,11r,13r,15s,17r)-17-isopropyl-11-methyl-14-oxa-16-azapentacyclo[11.3.1.0²,¹¹.0³,⁷.0¹⁰,¹⁵]heptadec-3-en-2-yl]propanoic acid

3-[(1r,2r,7s,10r,11r,13r,15s,17r)-17-isopropyl-11-methyl-14-oxa-16-azapentacyclo[11.3.1.0²,¹¹.0³,⁷.0¹⁰,¹⁵]heptadec-3-en-2-yl]propanoic acid

C22H33NO3 (359.246)


   

12-ethoxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadec-13-ene-6,8-diol

12-ethoxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadec-13-ene-6,8-diol

C22H33NO3 (359.246)


   

(2r,4ar,7r,8as,10as)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl carbamoylformate

(2r,4ar,7r,8as,10as)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl carbamoylformate

C22H33NO3 (359.246)


   

13-(2-hydroxyethenyl)-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecane-6,8-diol

13-(2-hydroxyethenyl)-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecane-6,8-diol

C22H33NO3 (359.246)


   

3-{17-isopropyl-11-methyl-14-oxa-16-azapentacyclo[11.3.1.0²,¹¹.0³,⁷.0¹⁰,¹⁵]heptadec-3-en-2-yl}propanoic acid

3-{17-isopropyl-11-methyl-14-oxa-16-azapentacyclo[11.3.1.0²,¹¹.0³,⁷.0¹⁰,¹⁵]heptadec-3-en-2-yl}propanoic acid

C22H33NO3 (359.246)


   

(1s,2r,4r,5r,7r,8s,9r,10r,13s,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

(1s,2r,4r,5r,7r,8s,9r,10r,13s,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecane-2,11,14-triol

7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecane-2,11,14-triol

C22H33NO3 (359.246)


   

3-[(1r,4r,5s,8s,9r,12s,13r,14r)-8-hydroxy-5,9-dimethyl-11-azahexacyclo[9.6.1.0¹,¹⁴.0⁴,¹⁸.0⁵,¹³.0⁸,¹²]octadecan-13-yl]propanoic acid

3-[(1r,4r,5s,8s,9r,12s,13r,14r)-8-hydroxy-5,9-dimethyl-11-azahexacyclo[9.6.1.0¹,¹⁴.0⁴,¹⁸.0⁵,¹³.0⁸,¹²]octadecan-13-yl]propanoic acid

C22H33NO3 (359.246)


   

(1r,2r,4s,5s,7r,8r,9r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

(1r,2r,4s,5s,7r,8r,9r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

7,8-dimethyl-11-methylidene-6-(2-methylpropyl)-1h,2h,3h,6h,6ah,7h,9ah,10h,11ah-indeno[5,4-d]isoindole-2,3a,4-triol

7,8-dimethyl-11-methylidene-6-(2-methylpropyl)-1h,2h,3h,6h,6ah,7h,9ah,10h,11ah-indeno[5,4-d]isoindole-2,3a,4-triol

C22H33NO3 (359.246)


   

(1r,2r,4r,5r,7r,8r,9r,10r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

(1r,2r,4r,5r,7r,8r,9r,10r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


   

7-(2-hydroxyethyl)-5-methyl-13-methylidene-9-oxa-7-azahexacyclo[8.6.2.2¹¹,¹⁴.0¹,⁸.0⁵,¹⁷.0¹¹,¹⁶]icosan-18-ol

7-(2-hydroxyethyl)-5-methyl-13-methylidene-9-oxa-7-azahexacyclo[8.6.2.2¹¹,¹⁴.0¹,⁸.0⁵,¹⁷.0¹¹,¹⁶]icosan-18-ol

C22H33NO3 (359.246)


   

2-[(1s,2s,4s,6r,7r,8r,10r,11r)-6,8-dihydroxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-13-yl]acetaldehyde

2-[(1s,2s,4s,6r,7r,8r,10r,11r)-6,8-dihydroxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-13-yl]acetaldehyde

C22H33NO3 (359.246)