Exact Mass: 345.2416146

Exact Mass Matches: 345.2416146

Found 66 metabolites which its exact mass value is equals to given mass value 345.2416146, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

3-hydroxyundecanoyl carnitine

3-[(3-hydroxyundecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H35NO5 (345.25151000000005)


3-Hydroxyundecanoyl carnitine is an acylcarnitine. More specifically, it is an 3-hydroxyundecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxyundecanoyl carnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-hydroxyundecanoyl carnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

8-Hydroxyundecanoylcarnitine

3-[(8-hydroxyundecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H35NO5 (345.25151000000005)


8-Hydroxyundecanoylcarnitine is an acylcarnitine. More specifically, it is an 8-hydroxyundecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 8-Hydroxyundecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 8-Hydroxyundecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

5-Hydroxyundecanoylcarnitine

3-[(5-hydroxyundecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H35NO5 (345.25151000000005)


5-Hydroxyundecanoylcarnitine is an acylcarnitine. More specifically, it is an 5-hydroxyundecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Hydroxyundecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Hydroxyundecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Hydroxyundecanoylcarnitine

3-[(2-hydroxyundecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H35NO5 (345.25151000000005)


2-Hydroxyundecanoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxyundecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxyundecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Hydroxyundecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

9-Hydroxyundecanoylcarnitine

3-[(9-hydroxyundecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H35NO5 (345.25151000000005)


9-Hydroxyundecanoylcarnitine is an acylcarnitine. More specifically, it is an 9-hydroxyundecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-Hydroxyundecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 9-Hydroxyundecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

6-Hydroxyundecanoylcarnitine

3-[(6-hydroxyundecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H35NO5 (345.25151000000005)


6-Hydroxyundecanoylcarnitine is an acylcarnitine. More specifically, it is an 6-hydroxyundecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-Hydroxyundecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 6-Hydroxyundecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

7-Hydroxyundecanoylcarnitine

3-[(7-hydroxyundecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H35NO5 (345.25151000000005)


7-Hydroxyundecanoylcarnitine is an acylcarnitine. More specifically, it is an 7-hydroxyundecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-Hydroxyundecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 7-Hydroxyundecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

10-Hydroxyundecanoylcarnitine

3-[(10-hydroxyundecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H35NO5 (345.25151000000005)


10-Hydroxyundecanoylcarnitine is an acylcarnitine. More specifically, it is an 10-hydroxyundecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 10-Hydroxyundecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 10-Hydroxyundecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

4-Hydroxyundecanoylcarnitine

3-[(4-hydroxyundecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C18H35NO5 (345.25151000000005)


4-Hydroxyundecanoylcarnitine is an acylcarnitine. More specifically, it is an 4-hydroxyundecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Hydroxyundecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 4-Hydroxyundecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

5-Nitroxystearic acid

2-(3-Carboxypropyl)-2-tridecyl-4,4-dimethyl-3-oxazolidinyloxyl

C18H35NO5 (345.25151000000005)


   
   
   
   
   
   
   
   
   
   

Dicyclomine hydrochloride

Dicyclomine hydrochloride

C19H36ClNO2 (345.24344260000004)


C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent Dicyclomine hydrochloride is a potent and orally active muscarinic cholinergic receptors antagonist. Dicyclomine hydrochloride shows high affinity for muscarinic M1 receptor subtype (Ki=5.1 nM) and M2 receptor subtype (Ki=54.6 nM) in brush-border membrane and basal plasma membranes, respectively[1]. Dicyclomine is an antispasmodic agent and relieves smooth muscle spasm of the gastrointestinal tract in vivo[2].

   

4-(3-(Piperidin-1-yl)propoxy)phenylboronic acid, pinacol ester

4-(3-(Piperidin-1-yl)propoxy)phenylboronic acid, pinacol ester

C20H32BNO3 (345.24751119999996)


   

tert-Butyl 4-(1-benzylpyrrolidin-3-yl)piperazine-1-carboxylate

tert-Butyl 4-(1-benzylpyrrolidin-3-yl)piperazine-1-carboxylate

C20H31N3O2 (345.2416146)


   
   
   
   
   
   
   
   
   
   

(7Z,10Z,13R,14E,16Z,19Z)-13-hydroxydocosapentaenoate

(7Z,10Z,13R,14E,16Z,19Z)-13-hydroxydocosapentaenoate

C22H33O3- (345.2429568)


A polyunsaturated fatty acid anion that is the conjugate base of (13R)-hydroxy-(7Z,10Z,14E,16Z,19Z)-docosapentaenoic acid, arising from deprotonation of the carboxylic acid group; major species at pH 7.3. It is an intermediate in 13-series resolvins biosynthesis from DPA (omega-3).

   

(2S)-6-amino-2-[[(2S)-2-[[(2S)-2,6-diaminohexanoyl]amino]propanoyl]amino]hexanoic Acid

(2S)-6-amino-2-[[(2S)-2-[[(2S)-2,6-diaminohexanoyl]amino]propanoyl]amino]hexanoic Acid

C15H31N5O4 (345.2375926)


   
   

(7Z,10Z,13Z,16Z)-18-(3-ethyloxiran-2-yl)octadeca-7,10,13,16-tetraenoate

(7Z,10Z,13Z,16Z)-18-(3-ethyloxiran-2-yl)octadeca-7,10,13,16-tetraenoate

C22H33O3- (345.2429568)


   

(4Z,7Z,10Z,13Z,16Z)-20-hydroxydocosa-4,7,10,13,16-pentaenoate

(4Z,7Z,10Z,13Z,16Z)-20-hydroxydocosa-4,7,10,13,16-pentaenoate

C22H33O3- (345.2429568)


   

(7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-7,10,13-trienoate

(7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-7,10,13-trienoate

C22H33O3- (345.2429568)


   

(7Z,10Z)-12-{3-[(2Z,5Z)-octa-2,5-dien-1-yl]oxiran-2-yl}dodeca-7,10-dienoate

(7Z,10Z)-12-{3-[(2Z,5Z)-octa-2,5-dien-1-yl]oxiran-2-yl}dodeca-7,10-dienoate

C22H33O3- (345.2429568)


   

(7Z)-9-{3-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]oxiran-2-yl}non-7-enoate

(7Z)-9-{3-[(2Z,5Z,8Z)-undeca-2,5,8-trien-1-yl]oxiran-2-yl}non-7-enoate

C22H33O3- (345.2429568)


   

2-{[1,1-bi(cyclohexyl)-1-ylcarbonyl]oxy}-N,N-diethylethanaminium chloride

2-{[1,1-bi(cyclohexyl)-1-ylcarbonyl]oxy}-N,N-diethylethanaminium chloride

C19H36ClNO2 (345.24344260000004)


   

(8E,10Z,13Z,16Z,19Z)-7-hydroxydocosa-8,10,13,16,19-pentaenoate

(8E,10Z,13Z,16Z,19Z)-7-hydroxydocosa-8,10,13,16,19-pentaenoate

C22H33O3- (345.2429568)


   

(4Z,7Z,10Z,12E,14S,16Z)-14-hydroxydocosa-4,7,10,12,16-pentaenoate

(4Z,7Z,10Z,12E,14S,16Z)-14-hydroxydocosa-4,7,10,12,16-pentaenoate

C22H33O3- (345.2429568)


   
   

(7Z,10Z,13Z,16Z)-19,20-epoxydocosatetraenoate

(7Z,10Z,13Z,16Z)-19,20-epoxydocosatetraenoate

C22H33O3 (345.2429568)


A docosanoid anion that is the conjugate base of (7Z,10Z,13Z,16Z)-19,20-epoxydocosatetraenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3

   

(7Z,10Z,13Z,19Z)-16,17-epoxydocosatetraenoate

(7Z,10Z,13Z,19Z)-16,17-epoxydocosatetraenoate

C22H33O3 (345.2429568)


A docosanoid anion that is the conjugate base of (7Z,10Z,13Z,19Z)-16,17-epoxydocosatetraenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(7Z,10Z,16Z,19Z)-13,14-epoxydocosatetraenoate

(7Z,10Z,16Z,19Z)-13,14-epoxydocosatetraenoate

C22H33O3 (345.2429568)


A docosanoid anion that is the conjugate base of (7Z,10Z,16Z,19Z)-13,14-epoxydocosatetraenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(7Z,13Z,16Z,19Z)-10,11-epoxydocosatetraenoate

(7Z,13Z,16Z,19Z)-10,11-epoxydocosatetraenoate

C22H33O3 (345.2429568)


A docosanoid anion that is the conjugate base of (7Z,13Z,16Z,19Z)-10,11-epoxydocosatetraenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(4Z,7Z,10Z,12E,14S,16Z)-14-hydroxydocosapentaenoate

(4Z,7Z,10Z,12E,14S,16Z)-14-hydroxydocosapentaenoate

C22H33O3 (345.2429568)


A hydroxydocosapentaenoate that is the conjugate base of (4Z,7Z,10Z,12E,14S,16Z)-14-hydroxydocosapentaenoic acid, arising from deprotonation of the carboxy group; major species at pH 7.3.

   

(8E,10Z,13Z,16Z,19Z)-7-hydroxydocosapentaenoate

(8E,10Z,13Z,16Z,19Z)-7-hydroxydocosapentaenoate

C22H33O3 (345.2429568)


A hydroxydocosahexaenoate that is the conjugate base of (8E,10Z,13Z,16Z,19Z)-docosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

(4Z,7Z,10Z,13Z,16Z)-20-hydroxydocosapentaenoate

(4Z,7Z,10Z,13Z,16Z)-20-hydroxydocosapentaenoate

C22H33O3 (345.2429568)


A docosanoid anion that is the conjugate base of (4Z,7Z,10Z,13Z,16Z)-20-hydroxydocosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   
   
   

13-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridecan-5-one

13-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridecan-5-one

C18H35NO5 (345.25151000000005)


   

13-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridecan-4-one

13-[3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridecan-4-one

C18H35NO5 (345.25151000000005)


   

13-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridecan-4-one

13-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridecan-4-one

C18H35NO5 (345.25151000000005)


   

(2e,4r,5s,6s,8r)-4,5,8-trihydroxy-n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-4,6-dimethyldec-2-enimidic acid

(2e,4r,5s,6s,8r)-4,5,8-trihydroxy-n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-4,6-dimethyldec-2-enimidic acid

C18H35NO5 (345.25151000000005)


   

13-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridecan-4-one

13-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridecan-4-one

C18H35NO5 (345.25151000000005)


   

4,5,8-trihydroxy-n-(1-hydroxy-3-methylpentan-2-yl)-4,6-dimethyldec-2-enimidic acid

4,5,8-trihydroxy-n-(1-hydroxy-3-methylpentan-2-yl)-4,6-dimethyldec-2-enimidic acid

C18H35NO5 (345.25151000000005)


   

13-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridecan-5-one

13-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridecan-5-one

C18H35NO5 (345.25151000000005)


   

({[(3s)-6-amino-3-{[(2s)-2-amino-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyhexylidene]amino}(methyl)amino)acetic acid

({[(3s)-6-amino-3-{[(2s)-2-amino-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyhexylidene]amino}(methyl)amino)acetic acid

C15H31N5O4 (345.2375926)


   

13-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridecan-5-one

13-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1-hydroxytridecan-5-one

C18H35NO5 (345.25151000000005)


   

[({6-amino-3-[(2-amino-1-hydroxy-4-methylpentylidene)amino]-1-hydroxyhexylidene}amino)(methyl)amino]acetic acid

[({6-amino-3-[(2-amino-1-hydroxy-4-methylpentylidene)amino]-1-hydroxyhexylidene}amino)(methyl)amino]acetic acid

C15H31N5O4 (345.2375926)