Exact Mass: 336.074

Exact Mass Matches: 336.074

Found 89 metabolites which its exact mass value is equals to given mass value 336.074, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

SCHEMBL13090763

1-(5-O-phosphono-beta-D-ribofuranosyl)-1,4-dihydropyridine-3-carboxamide

C11H17N2O8P (336.0722)


   

S-Nitrosoglutathione

(2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl]-2-(nitrososulfanyl)ethyl]carbamoyl}butanoic acid

C10H16N4O7S (336.074)


S-Nitrosoglutathione is a S-nitrosothiol. S-nitrosothiols (RSNOs) are thought to represent a circulating endogenous reservoir of nitric oxide (NO), and may have potential as donors of nitric oxide, distinct from currently used agents. They have the general formula RSNO, and naturally occurring examples include S-nitrosocysteine, S-nitrosoglutathione and S-nitrosoalbumin, in which R is an amino acid, polypeptide and protein respectively. RSNOs have anti-platelet properties, a theoretical role in the treatment of asthma and the potential to be used as agents to treat infectious diseases ranging from the common cold to AIDS. RSNOs are relatively unstable, being degraded to release nitric oxide and the corresponding disulphide. Their stability is influenced by the properties of the R group, heat, light, the presence of transition metal ions (in particular copper) and the presence of other thiols. RSNOs participate in transnitrosation reactions in which the -nitric oxide group is transferred to another thiol to form a more stable RSNO. Potential interactions of RSNOs include that with ascorbic acid (vitamin C), which enhances the ability of copper to catalyse their degradation. Transnitrosation reactions with thiol-containing enzymes can influence protein function, and the intracellular thiol glutathione, levels of which are influenced by many disease states, can also influence stability. Genetic and biochemical data demonstrate a pivotal role for S-nitrosothiols in mediating the actions of nitric oxide synthases (NOSs). RSNOs serve to convey NO bioactivity and to regulate protein function. S-Nitrosoglutathione breakdown is subject to precise regulation. For example, S-Nitrosoglutathione reductase (GSNOR) breaks down cytosolic S-Nitrosoglutathione, ultimately to oxidized GSH and ammonia. GSNOR, in turn, modulates the levels of some S-nitrosylated proteins. S-nitrosoglutathione, formed as nitric oxide moves away from erythrocytes in response to hemoglobin desaturation, may signal hypoxia-inducible factor-1-mediated physiologic and gene regulatory events in pulmonary endothelial cells without profound hypoxia, through a thiol-based reaction. S-Nitrosoglutathione stabilizes the alpha-subunit of hypoxia inducible factor1 (HIF-1) in normoxic cells, but not in the presence of PI3K inhibitors. (PMID: 11749666, 17541013, 16528016). S-Nitrosoglutathione is a S-nitrosothiol. S-nitrosothiols (RSNOs) are thought to represent a circulating endogenous reservoir of nitric oxide (NO), and may have potential as donors of nitric oxide, distinct from currently used agents. They have the general formula RSNO, and naturally occurring examples include S-nitrosocysteine, S-nitrosoglutathione and S-nitrosoalbumin, in which R is an amino acid, polypeptide and protein respectively. RSNOs have anti-platelet properties, a theoretical role in the treatment of asthma and the potential to be used as agents to treat infectious diseases ranging from the common cold to AIDS. RSNOs are relatively unstable, being degraded to release nitric oxide and the corresponding disulphide. Their stability is influenced by the properties of the R group, heat, light, the presence of transition metal ions (in particular copper) and the presence of other thiols. RSNOs participate in transnitrosation reactions in which the -nitric oxide group is transferred to another thiol to form a more stable RSNO. Potential interactions of RSNOs include that with ascorbic acid (vitamin C), which enhances the ability of copper to catalyse their degradation. Transnitrosation reactions with thiol-containing enzymes can influence protein function, and the intracellular thiol glutathione, levels of which are influenced by many disease states, can also influence stability. D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors > D026403 - S-Nitrosothiols D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000890 - Anti-Infective Agents D020011 - Protective Agents Nitrosoglutathione (GSNO), a exogenous NO donor and a substrate for rat alcohol dehydrogenase class III isoenzyme, inhibits cerebrovascular angiotensin II-dependent and -independent AT1 receptor responses[1][2][3][4].

   

Captopril-cysteine disulfide

(2S)-1-[(2S)-3-{[(2R)-2-amino-2-carboxyethyl]disulfanyl}-2-methylpropanoyl]pyrrolidine-2-carboxylic acid

C12H20N2O5S2 (336.0814)


Captopril-cysteine disulfide is a metabolite of captopril. Captopril is an angiotensin-converting enzyme inhibitor used for the treatment of hypertension and some types of congestive heart failure. Captopril was the first ACE inhibitor developed and was considered a breakthrough both because of its novel mechanism of action and also because of the revolutionary development process. Captopril is commonly marketed by Bristol-Myers Squibb under the trade name Capoten. (Wikipedia)

   

6-Methyl-griseofulvin

(2S,6R)-7-chloro-2,4-dimethoxy-6,6-dimethyl-3H-spiro[1-benzofuran-2,1-cyclohexan]-2-ene-3,4-dione

C17H17ClO5 (336.0764)


6-Methyl-griseofulvin is a metabolite of griseofulvin. Griseofulvin (marketed under the proprietary name Grifulvin V by Orthoneutrogena Labs, according to FDA orange book) is an antifungal drug that is administered orally. It is used both in animals and in humans, to treat fungal infections of the skin (commonly known as ringworm) and nails. It is produced by culture of some strains of the mold Penicillium griseofulvum, from which it was isolated in 1939. (Wikipedia)

   

N-(N-L-gamma-Glutamyl-S-nitroso-L-cysteinyl)glycine

2-Amino-4-({1-[(carboxymethyl)-C-hydroxycarbonimidoyl]-2-(nitrososulphanyl)ethyl}-C-hydroxycarbonimidoyl)butanoic acid

C10H16N4O7S (336.074)


   

Captopril-cysteine disulfide

Captopril-cysteine disulfide

C12H20N2O5S2 (336.0814)


   
   

Cyclolaurenol acetate

[1S-(1alpha,2beta,5alpha)]-4-Bromo-5-(1,2-dimethylbicyclo[3.1.0]hex-2-yl)-2-methylphenol acetate

C17H21BrO2 (336.0725)


   

Cupalaurenol acetate

(R)-4-Bromo-2-methyl-5-(1,2,2-trimethyl-3-cyclopenten-1-yl)phenol acetate

C17H21BrO2 (336.0725)


   

CHFAIFZIDCGGMS-UHFFFAOYSA-

CHFAIFZIDCGGMS-UHFFFAOYSA-

C16H21BrN2O (336.0837)


   
   

Maybridge3_001194

Maybridge3_001194

C20H13FO4 (336.0798)


   
   

isolaurinterol acetate|Isolaurinterolacetate

isolaurinterol acetate|Isolaurinterolacetate

C17H21BrO2 (336.0725)


   
   

isolaurenisol acetate

isolaurenisol acetate

C17H21BrO2 (336.0725)


   
   

allolaurinterol acetate|Allolaurinterolacetat

allolaurinterol acetate|Allolaurinterolacetat

C17H21BrO2 (336.0725)


   

coniothiepinol B

coniothiepinol B

C16H16O6S (336.0668)


   

(8Z,14Z)-8-bromoheptadeca-8,14-dien-4,16-diynoic acid

(8Z,14Z)-8-bromoheptadeca-8,14-dien-4,16-diynoic acid

C17H21BrO2 (336.0725)


   

laurinterol acetate|Laurinterolacetat

laurinterol acetate|Laurinterolacetat

C17H21BrO2 (336.0725)


   

7-Bromo, 10-acetoxy-C ycloaurenol

7-Bromo, 10-acetoxy-C ycloaurenol

C17H21BrO2 (336.0725)


   

3-Chlor-2,4-dihydroxy-6,2-dimethoxy-4,6-dimethyl-benzophenon

3-Chlor-2,4-dihydroxy-6,2-dimethoxy-4,6-dimethyl-benzophenon

C17H17ClO5 (336.0764)


   
   

8-Chloro-2-(2-phenylethyl)-5,6,7-trihydroxy-5,6,7,8-tetrahydrochromone

(5S,6S,7S,8R)-8-chloro-5,6,7-trihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromen-4-one

C17H17O5Cl (336.0764)


(5S,6S,7S,8R)-8-chloro-5,6,7-trihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromen-4-one is a natural product found in Aquilaria sinensis with data available.

   
   

Pterostilbene Phosphate

Pterostilbene Phosphate

C16H17O6P (336.0763)


   

Nitrosoglutathione

N-(N-L-γ-glutamyl-S-nitroso-L-cysteinyl)-glycine

C10H16N4O7S (336.074)


Nitrosoglutathione (GSNO), a exogenous NO donor and a substrate for rat alcohol dehydrogenase class III isoenzyme, inhibits cerebrovascular angiotensin II-dependent and -independent AT1 receptor responses[1][2][3][4].

   
   

[4-(4-chloro-phenyl)-piperazin-1-yl]-thiophen-3-yl-acetic acid

[4-(4-chloro-phenyl)-piperazin-1-yl]-thiophen-3-yl-acetic acid

C16H17ClN2O2S (336.0699)


   

1,2-DIMETHYL-3-SULFOPROPYL-5-TRIFLUOROMETHYLBENZIMIDAZOLIUM, INNER SALT

1,2-DIMETHYL-3-SULFOPROPYL-5-TRIFLUOROMETHYLBENZIMIDAZOLIUM, INNER SALT

C13H15F3N2O3S (336.0755)


   

2-[(4-sulfamoylphenyl)carbamoyl]bicyclo[2.2.1]hept-5-ene-3-carboxylic acid

2-[(4-sulfamoylphenyl)carbamoyl]bicyclo[2.2.1]hept-5-ene-3-carboxylic acid

C15H16N2O5S (336.078)


   

4-Chloro-2-hydroxycarbazole-1-carboxanilide

4-Chloro-2-hydroxycarbazole-1-carboxanilide

C19H13ClN2O2 (336.0666)


   

[4-(4-chloro-phenyl)-piperazin-1-yl]-thiophen-2-yl-acetic acid

[4-(4-chloro-phenyl)-piperazin-1-yl]-thiophen-2-yl-acetic acid

C16H17ClN2O2S (336.0699)


   

Etifoxine hydrochloride

Etifoxine hydrochloride

C17H18Cl2N2O (336.0796)


Etifoxine hydrochloride, a non-benzodiazepine GABAergic compound, is a positive allosteric modulator of α1β2γ2 and α1β3γ2 subunit-containing GABAA receptors. Etifoxine hydrochloride reveals anxiolytic and anticonvulsant properties in rodents[1][2][3].

   

4,4-Oxybis[3-(trifluoromethyl)aniline]

4,4-Oxybis[3-(trifluoromethyl)aniline]

C14H10F6N2O (336.0697)


   

3-(4-Chlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione

3-(4-Chlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione

C19H13ClN2O2 (336.0666)


   

(E)-ETHYL 2-(4-BROMOPHENYL)-3-CYCLOHEXYLACRYLATE

(E)-ETHYL 2-(4-BROMOPHENYL)-3-CYCLOHEXYLACRYLATE

C17H21BrO2 (336.0725)


   

4-[4-(3-chlorophenoxy)-3-oxobut-1-enyl]-5-hydroxy-3,3a,4,5,6,6a-hexahydrocyclopenta[b]furan-2-one

4-[4-(3-chlorophenoxy)-3-oxobut-1-enyl]-5-hydroxy-3,3a,4,5,6,6a-hexahydrocyclopenta[b]furan-2-one

C17H17ClO5 (336.0764)


   

3,3-oxybis[5-(trifluoromethyl)benzenamine]

3,3-oxybis[5-(trifluoromethyl)benzenamine]

C14H10F6N2O (336.0697)


   

[3aa,4a(E),5b,6aa]-4-[4-(3-Chlorophenoxy)-3-oxo-1-butenyl]hexahydro-5-hydroxy-2H-cyclopenta[b]furan-2-one

[3aa,4a(E),5b,6aa]-4-[4-(3-Chlorophenoxy)-3-oxo-1-butenyl]hexahydro-5-hydroxy-2H-cyclopenta[b]furan-2-one

C17H17ClO5 (336.0764)


   

PROPAPHOS SULFONE

PROPAPHOS SULFONE

C13H21O6PS (336.0796)


   

1-Methoxy-5-methylphenazinium methyl sulfate

1-Methoxy-5-methylphenazinium methyl sulfate

C15H16N2O5S (336.078)


   

N-(3-cyano-4-methyl-1H-indol-7-yl)-3-cyanobenzene-sulfonamide

N-(3-cyano-4-methyl-1H-indol-7-yl)-3-cyanobenzene-sulfonamide

C17H12N4O2S (336.0681)


C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C2144 - Endothelial-Specific Integrin/Survival Signaling Inhibitor

   

6-(3,5-Difluoroanilino)-9-(2,2-difluoroethyl)purine-2-carbonitrile

6-(3,5-Difluoroanilino)-9-(2,2-difluoroethyl)purine-2-carbonitrile

C14H8F4N6 (336.0747)


   

5-Amino-4-(1,3-benzothiazol-6-ylhydrazinylidene)-2-phenyl-3-pyrazolone

5-Amino-4-(1,3-benzothiazol-6-ylhydrazinylidene)-2-phenyl-3-pyrazolone

C16H12N6OS (336.0793)


   

N-[2-[(4-methyl-1,2,4-triazol-3-yl)sulfanyl]acetyl]-4-nitrobenzohydrazide

N-[2-[(4-methyl-1,2,4-triazol-3-yl)sulfanyl]acetyl]-4-nitrobenzohydrazide

C12H12N6O4S (336.0641)


   

2-{5-[Amino(iminio)methyl]-1H-benzimidazol-2-YL}-4-(trifluoromethoxy)benzenolate

2-{5-[Amino(iminio)methyl]-1H-benzimidazol-2-YL}-4-(trifluoromethoxy)benzenolate

C15H11F3N4O2 (336.0834)


   

6-chloro-3-(3-methylisoxazol-5-yl)-4-phenylquinolin-2(1H)-one

6-chloro-3-(3-methylisoxazol-5-yl)-4-phenylquinolin-2(1H)-one

C19H13ClN2O2 (336.0666)


   

4-[[1-(4-Chlorophenyl)triazol-4-yl]methoxy]quinoline

4-[[1-(4-Chlorophenyl)triazol-4-yl]methoxy]quinoline

C18H13ClN4O (336.0778)


   

[5-(3-carbamoyl-4H-pyridin-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate

[5-(3-carbamoyl-4H-pyridin-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate

C11H17N2O8P (336.0722)


   

g-glutamyl-S-nitrosocysteinylglycine

g-glutamyl-S-nitrosocysteinylglycine

C10H16N4O7S (336.074)


   

3-[(5-chloro-2-pyridinyl)amino]-2-(2-pyridinyl)-3H-isoindol-1-one

3-[(5-chloro-2-pyridinyl)amino]-2-(2-pyridinyl)-3H-isoindol-1-one

C18H13ClN4O (336.0778)


   

1-phenyl-6-[(2-pyrimidinylthio)methyl]-2H-pyrazolo[3,4-d]pyrimidin-4-one

1-phenyl-6-[(2-pyrimidinylthio)methyl]-2H-pyrazolo[3,4-d]pyrimidin-4-one

C16H12N6OS (336.0793)


   

1-(5-Chloro-2,4-dimethoxyphenyl)-3-(phenylmethyl)thiourea

1-(5-Chloro-2,4-dimethoxyphenyl)-3-(phenylmethyl)thiourea

C16H17ClN2O2S (336.0699)


   

2-[4-(Pyridin-4-ylmethylsulfamoyl)phenoxy]acetic acid methyl ester

2-[4-(Pyridin-4-ylmethylsulfamoyl)phenoxy]acetic acid methyl ester

C15H16N2O5S (336.078)


   

7-Amino-2-(ethylsulfanyl)-5-oxo-1-phenyl-1,5-dihydro[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbonitrile

7-Amino-2-(ethylsulfanyl)-5-oxo-1-phenyl-1,5-dihydro[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbonitrile

C16H12N6OS (336.0793)


   

1-[3-[(2-Amino-2-carboxyethyl)disulfanyl]-2-methylpropanoyl]pyrrolidine-2-carboxylic acid

1-[3-[(2-Amino-2-carboxyethyl)disulfanyl]-2-methylpropanoyl]pyrrolidine-2-carboxylic acid

C12H20N2O5S2 (336.0814)


   

[6-hydroxy-2-methoxy-3-[(E)-3-phenylprop-2-enyl]phenyl] hydrogen sulate

[6-hydroxy-2-methoxy-3-[(E)-3-phenylprop-2-enyl]phenyl] hydrogen sulate

C16H16O6S (336.0668)


   

[4-[(E)-3-(4-hydroxy-2-methoxyphenyl)prop-1-enyl]phenyl] hydrogen sulate

[4-[(E)-3-(4-hydroxy-2-methoxyphenyl)prop-1-enyl]phenyl] hydrogen sulate

C16H16O6S (336.0668)


   

[3-[(E)-3-(4-hydroxy-2-methoxyphenyl)prop-1-enyl]phenyl] hydrogen sulate

[3-[(E)-3-(4-hydroxy-2-methoxyphenyl)prop-1-enyl]phenyl] hydrogen sulate

C16H16O6S (336.0668)


   

3-cyano-N-(3-methanimidoyl-4-methylindol-7-ylidene)benzenesulfonamide

3-cyano-N-(3-methanimidoyl-4-methylindol-7-ylidene)benzenesulfonamide

C17H12N4O2S (336.0681)


   

1-(5-O-phosphono-beta-D-ribofuranosyl)-1,4-dihydropyridine-3-carboxamide

1-(5-O-phosphono-beta-D-ribofuranosyl)-1,4-dihydropyridine-3-carboxamide

C11H17N2O8P (336.0722)


   

S-nitrosoglutathione

L-γ-Glutamyl-S-nitroso-L-cysteinylglycine

C10H16N4O7S (336.074)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors > D026403 - S-Nitrosothiols D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000890 - Anti-Infective Agents D020011 - Protective Agents Nitrosoglutathione (GSNO), a exogenous NO donor and a substrate for rat alcohol dehydrogenase class III isoenzyme, inhibits cerebrovascular angiotensin II-dependent and -independent AT1 receptor responses[1][2][3][4].

   

NMNH

NMNH

C11H17N2O8P (336.0722)


A nicotinamide mononucleotide that is obtained by addition of hydride to position 4 on the pyridine ring of NMN(+).

   

4-bromo-5-[(1r,2s,5s)-1,2-dimethylbicyclo[3.1.0]hexan-2-yl]-2-methylphenyl acetate

4-bromo-5-[(1r,2s,5s)-1,2-dimethylbicyclo[3.1.0]hexan-2-yl]-2-methylphenyl acetate

C17H21BrO2 (336.0725)


   

7-bromo-1-methyl-3a-(3-methylbut-2-en-1-yl)-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-4-ol

7-bromo-1-methyl-3a-(3-methylbut-2-en-1-yl)-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-4-ol

C16H21BrN2O (336.0837)


   

2-[(1s,2e,3s)-2-(bromomethylidene)-1,3-dimethylcyclopentyl]-5-methylphenyl acetate

2-[(1s,2e,3s)-2-(bromomethylidene)-1,3-dimethylcyclopentyl]-5-methylphenyl acetate

C17H21BrO2 (336.0725)


   

(1s,7s,8s,11s)-11-(hydroxymethyl)-12-methyl-10,13-dioxo-14-thia-9,12-diazatetracyclo[9.2.1.0¹,⁹.0³,⁸]tetradeca-3,5-dien-7-yl acetate

(1s,7s,8s,11s)-11-(hydroxymethyl)-12-methyl-10,13-dioxo-14-thia-9,12-diazatetracyclo[9.2.1.0¹,⁹.0³,⁸]tetradeca-3,5-dien-7-yl acetate

C15H16N2O5S (336.078)


   

4-bromo-2-methyl-5-[(1r)-1,2,2-trimethylcyclopent-3-en-1-yl]phenyl acetate

4-bromo-2-methyl-5-[(1r)-1,2,2-trimethylcyclopent-3-en-1-yl]phenyl acetate

C17H21BrO2 (336.0725)


   

(3as,8as)-7-bromo-1-methyl-3a-(3-methylbut-2-en-1-yl)-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-4-ol

(3as,8as)-7-bromo-1-methyl-3a-(3-methylbut-2-en-1-yl)-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-4-ol

C16H21BrN2O (336.0837)


   

1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-4h-pyridine-3-carboximidic acid

1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-4h-pyridine-3-carboximidic acid

C11H17N2O8P (336.0722)


   

(3as,8ar)-6-bromo-1-methyl-8a-(2-methylbut-3-en-2-yl)-2h,3h,8h-pyrrolo[2,3-b]indol-3a-ol

(3as,8ar)-6-bromo-1-methyl-8a-(2-methylbut-3-en-2-yl)-2h,3h,8h-pyrrolo[2,3-b]indol-3a-ol

C16H21BrN2O (336.0837)


   

4-bromo-2-[(1r,2s)-1,2-dimethyl-3-methylidenecyclopentyl]-5-methylphenyl acetate

4-bromo-2-[(1r,2s)-1,2-dimethyl-3-methylidenecyclopentyl]-5-methylphenyl acetate

C17H21BrO2 (336.0725)


   

methyl 4,7-dihydroxy-9-methyl-6-oxo-2h,3h,4h,5h-thiepino[2,3-b]chromene-5-carboxylate

methyl 4,7-dihydroxy-9-methyl-6-oxo-2h,3h,4h,5h-thiepino[2,3-b]chromene-5-carboxylate

C16H16O6S (336.0668)


   

4-bromo-2-(1,2-dimethyl-3-methylidenecyclopentyl)-5-methylphenyl acetate

4-bromo-2-(1,2-dimethyl-3-methylidenecyclopentyl)-5-methylphenyl acetate

C17H21BrO2 (336.0725)


   

8-chloro-5,6,7-trihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromen-4-one

8-chloro-5,6,7-trihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromen-4-one

C17H17ClO5 (336.0764)


   

4-{[(3r)-4-chloro-3-hydroxy-4-methylpentyl]oxy}furo[3,2-g]chromen-7-one

4-{[(3r)-4-chloro-3-hydroxy-4-methylpentyl]oxy}furo[3,2-g]chromen-7-one

C17H17ClO5 (336.0764)


   

2-[(2e)-2-(bromomethylidene)-1,3-dimethylcyclopentyl]-5-methylphenyl acetate

2-[(2e)-2-(bromomethylidene)-1,3-dimethylcyclopentyl]-5-methylphenyl acetate

C17H21BrO2 (336.0725)


   

4-[(4-chloro-3-hydroxy-4-methylpentyl)oxy]furo[3,2-g]chromen-7-one

4-[(4-chloro-3-hydroxy-4-methylpentyl)oxy]furo[3,2-g]chromen-7-one

C17H17ClO5 (336.0764)


   

4-bromo-2-methyl-5-(1,2,2-trimethylcyclopent-3-en-1-yl)phenyl acetate

4-bromo-2-methyl-5-(1,2,2-trimethylcyclopent-3-en-1-yl)phenyl acetate

C17H21BrO2 (336.0725)


   

6-bromo-1-methyl-8a-(2-methylbut-3-en-2-yl)-2h,3h,8h-pyrrolo[2,3-b]indol-3a-ol

6-bromo-1-methyl-8a-(2-methylbut-3-en-2-yl)-2h,3h,8h-pyrrolo[2,3-b]indol-3a-ol

C16H21BrN2O (336.0837)


   

4-bromo-5-{1,2-dimethylbicyclo[3.1.0]hexan-2-yl}-2-methylphenyl acetate

4-bromo-5-{1,2-dimethylbicyclo[3.1.0]hexan-2-yl}-2-methylphenyl acetate

C17H21BrO2 (336.0725)


   

11-(hydroxymethyl)-12-methyl-10,13-dioxo-14-thia-9,12-diazatetracyclo[9.2.1.0¹,⁹.0³,⁸]tetradeca-3,5-dien-7-yl acetate

11-(hydroxymethyl)-12-methyl-10,13-dioxo-14-thia-9,12-diazatetracyclo[9.2.1.0¹,⁹.0³,⁸]tetradeca-3,5-dien-7-yl acetate

C15H16N2O5S (336.078)


   

(3as,8as)-6-bromo-1-methyl-8-(3-methylbut-2-en-1-yl)-2h,3h,8ah-pyrrolo[2,3-b]indol-3a-ol

(3as,8as)-6-bromo-1-methyl-8-(3-methylbut-2-en-1-yl)-2h,3h,8ah-pyrrolo[2,3-b]indol-3a-ol

C16H21BrN2O (336.0837)


   

(3ar,8as)-6-bromo-1-methyl-8a-(2-methylbut-3-en-2-yl)-2h,3h,8h-pyrrolo[2,3-b]indol-3a-ol

(3ar,8as)-6-bromo-1-methyl-8a-(2-methylbut-3-en-2-yl)-2h,3h,8h-pyrrolo[2,3-b]indol-3a-ol

C16H21BrN2O (336.0837)


   

methyl (4s,5r)-4,7-dihydroxy-9-methyl-6-oxo-2h,3h,4h,5h-thiepino[2,3-b]chromene-5-carboxylate

methyl (4s,5r)-4,7-dihydroxy-9-methyl-6-oxo-2h,3h,4h,5h-thiepino[2,3-b]chromene-5-carboxylate

C16H16O6S (336.0668)


   

4-bromo-5-[(1s,2r,5r)-1,2-dimethylbicyclo[3.1.0]hexan-2-yl]-2-methylphenyl acetate

4-bromo-5-[(1s,2r,5r)-1,2-dimethylbicyclo[3.1.0]hexan-2-yl]-2-methylphenyl acetate

C17H21BrO2 (336.0725)


   

6-bromo-1-methyl-8-(3-methylbut-2-en-1-yl)-2h,3h,8ah-pyrrolo[2,3-b]indol-3a-ol

6-bromo-1-methyl-8-(3-methylbut-2-en-1-yl)-2h,3h,8ah-pyrrolo[2,3-b]indol-3a-ol

C16H21BrN2O (336.0837)