Exact Mass: 331.2126
Exact Mass Matches: 331.2126
Found 138 metabolites which its exact mass value is equals to given mass value 331.2126
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
2-[Octahydro-4,7-dimethyl-1-oxocyclopenta[c]pyran-3-yl]nepetalactam
2-[Octahydro-4,7-dimethyl-1-oxocyclopenta[c]pyran-3-yl]nepetalactam is found in herbs and spices. 2-[Octahydro-4,7-dimethyl-1-oxocyclopenta[c]pyran-3-yl]nepetalactam is isolated from a commercial sample of catnip oil (Nepeta cataria). Isolated from a commercial sample of catnip oil (Nepeta cataria). 2-[Octahydro-4,7-dimethyl-1-oxocyclopenta[c]pyran-3-yl]nepetalactam is found in tea and herbs and spices.
Marimastat
Marimastat is only found in individuals that have used or taken this drug. It is used in the treatment of cancer, Marmiastat is an angiogenesis and metastasis inhibitor. As an angiogenesis inhibitor it limits the growth and production of blood vessels. As an antimetatstatic agent it prevents malignant cells from breaching the basement membranes.Marimastat is a broad spectrum matrix metalloprotease inhibitor. It mimics the peptide structure of natural MMP substrates and binds to matrix metalloproteases, thereby preventing the degradation of the basement membrane by these proteases. This antiprotease action prevents the migration of endothelial cells needed to form new blood vessels. Inhibition of MMPs also prevents the entry and exit of tumor cells into existing blood cells, thereby preventing metastasis. C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C1970 - Matrix Metalloproteinase Inhibitor C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor D004791 - Enzyme Inhibitors
N-Lauroyl Methionine
N-lauroyl methionine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Lauric acid amide of Methionine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Lauroyl Methionine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Lauroyl Methionine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Myristoyl Cysteine
N-myristoyl cysteine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Cysteine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Cysteine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Cysteine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
2H-1,2-Oxazin-3(4H)-one, 4-((3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl)methylene)dihydro-2-methyl-
N-Methoxy-3-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2-pyrrolidone
(8E)-N-isobutyl-9-(3,4-methylenedioxyphenyl)nona-8-enamide|dehydroretrofractamide C
Marimastat
C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C1970 - Matrix Metalloproteinase Inhibitor C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor D004791 - Enzyme Inhibitors
2-[Octahydro-4,7-dimethyl-1-oxocyclopenta[c]pyran-3-yl]nepetalactam
1-(4-(5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDIN-3-YL)PIPERAZIN-1-YL)ETHANONE
2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine
3,5-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine
(2S,4R)-1-Boc-4-(tert-butyldimethylsilyloxy)-2-(hydroxyMethyl)pyrrolidine
Acetamide, N-[1-[tris(1-methylethyl)silyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-
Methyl 3-oxo-4-aza-5alpha-androst-1-ene-17beta-carboxylate
(1-methylpiperidin-3-yl) 2-cyclohexyl-2-hydroxy-2-phenylacetate
(2S,3S,4E,6E,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid
Centhaquine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2-phenyl-N-(2-piperidin-1-ylethyl)quinolin-4-amine
(2S)-6-amino-2-[[2-[[(2S)-2,6-diaminohexanoyl]amino]acetyl]amino]hexanoic Acid
(2S,3S,8S,9S)-3-Amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid
(3Z)-3-[(3,5-ditert-butyl-4-hydroxyphenyl)methylidene]-1-methoxypyrrolidin-2-one
(4Z)-4-[(3,5-ditert-butyl-4-hydroxyphenyl)methylidene]-2-methyloxazinan-3-one
(8E)-N-isobutyl-9-(3,4-methylenedioxyphenyl)nona-8-enamide
A natural product found in Piper boehmeriaefolium.
Leu-Leu-Ser
A tripeptide composed of two L-leucine units and L-serine joined in sequence by peptide linkages.
Propenzolate
C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent
1-(3,4-Dimethylphenyl)-4-(4-methylpiperidin-1-yl)phthalazine
1-[[3-(2-Fluorophenyl)-1-methyl-4-pyrazolyl]methyl]-3-propoxypiperidine
4-Anilino-4-oxobutanoic acid (4-tert-butylcyclohexyl) ester
11-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]undecanoate
(10R)-10-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxyundecanoate
oscr#18(1-)
A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#18, obtained by deprotonation of the carboxy group; major species at pH 7.3.