Exact Mass: 275.1382182

Exact Mass Matches: 275.1382182

Found 130 metabolites which its exact mass value is equals to given mass value 275.1382182, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

epsilon-(gamma-Glutamyl)lysine

(2S)-2-amino-6-[(4S)-4-amino-4-carboxybutanamido]hexanoic acid

C11H21N3O5 (275.1481136)


In non-diabetic kidney scarring the protein crosslinking enzyme tissue transglutaminase (tTg) has been implicated in the process by the formation of increased epsilon-(gamma-glutamyl)lysine bonds between ECM components in both experimental and human disease. Changes in tTg and epsilon-(gamma-glutamyl)lysine occur in human Diabetic nephropathy as well, the leading cause of chronic kidney failure. (PMID 15292688). In Parkinsons disease (PD), conformational changes in the alpha-synuclein monomer precede the formation of Lewy bodies. Both tTG and its substrate-characteristic N(epsilon)-(gamma-glutamyl)-lysine crosslink are increased in PD nigral dopamine neurons. (PMID 15001552). Expression of tissue transglutaminase (tTgase) and epsilon-(gamma-glutamyl)-lysine was present in all scarring of the blebs sites, being the main cause of failure in glaucoma filtration surgery. Transglutaminases are calcium-dependent enzymes that catalyze the posttranslational modification of proteins through an acyl transfer reaction between the gamma-carboxamide group of a peptide-bound glutaminyl residue and various amines. Covalent cross-linking using epsilon-(gamma-glutamyl)-lysine bonds is stable and resistant to enzymatic, chemical, and mechanical disruption. (PMID: 16936095). In non-diabetic kidney scarring the protein crosslinking enzyme tissue transglutaminase (tTg) has been implicated in the process by the formation of increased epsilon-(gamma-glutamyl)lysine bonds between ECM components in both experimental and human disease. Changes in tTg and epsilon-(gamma-glutamyl)lysine occur in human Diabetic nephropathy as well, the leading cause of chronic kidney failure. (PMID 15292688)

   

2-Acetamido-4-(D-alanylamino)-2,4,6-trideoxy-D-mannopyranose

2-Acetamido-4-(D-alanylamino)-2,4,6-trideoxy-D-mannopyranose

C11H21N3O5 (275.1481136)


   

gamma-Glutamyllysine

(2S)-6-Amino-2-{[(4S)-4-amino-4-carboxy-1-hydroxybutylidene]amino}hexanoate

C11H21N3O5 (275.1481136)


gamma-Glutamyllysine is a dipeptide composed of gamma-glutamate and lysine, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. gamma-Glutamyllysine is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.

   

Lysylglutamic acid

(2S)-2-[(2S)-2,6-diaminohexanamido]pentanedioic acid

C11H21N3O5 (275.1481136)


Lysylglutamic acid is a dipeptide composed of lysine and glutamic acid. It is an incomplete breakdown product of protein digestion or protein catabolism. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Some dipeptides are known to have physiological or cell-signalling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.

   

Glutamyllysine

(2S)-6-amino-2-[(2S)-2-amino-4-carboxybutanamido]hexanoic acid

C11H21N3O5 (275.1481136)


Glutamyllysine is a dipeptide composed of glutamate and lysine, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. Glutamyllysine is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. The absorption of glutamyllysine is facilitated by the human intestinal oligopeptide transporter (PEPT1) (PMID 16759105). Glutamyl-L-lysine is a dipeptide whose absorption is facilitated by the human intestinal oligopeptide transporter (PEPT1) (PMID 16759105).

   

Glutarylcarnitine (C5-DC)

(3R)-3-[(4-carboxybutanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C12H21NO6 (275.13688060000004)


Glutarylcarnitine is an acylcarnitine. More specifically, it is an glutaric acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Glutarylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine glutarylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). Glutarylcarnitine has been identified in the human placenta (PMID: 32033212 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. Glutarylcarnitine is the diagnostic metabolite for malonic aciduria and glutaric aciduria type I monitored in most tandem mass spectrometry newborn screening programmes.

   

O-Glutarylcarnitine

3-[(4-Carboxybutanoyl)oxy]-4-(trimethylammonio)butanoic acid

C12H21NO6 (275.13688060000004)


O-Glutarylcarnitine is an acylcarnitine. More specifically, it is an glutaric acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. O-Glutarylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine O-Glutarylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Ethylpropanedioylcarnitine

3-[(2-carboxy-2-ethylacetyl)oxy]-4-(trimethylazaniumyl)butanoate

C12H21NO6 (275.13688060000004)


2-Ethylpropanedioylcarnitine is an acylcarnitine. More specifically, it is an 2-ethylpropanedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Ethylpropanedioylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine 2-Ethylpropanedioylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

epsilon-(gamma-Glutamyl)-L-lysine

2,6,10-triamino-5-oxoundecanedioic acid

C11H21N3O5 (275.1481136)


   

[(1S,2S,4S,5S)-2-(6-Aminopurin-9-yl)-5-(hydroxymethyl)-4-bicyclo[3.1.0]hexanyl]methanol

[(1S,2S,4S,5S)-2-(6-Aminopurin-9-yl)-5-(hydroxymethyl)-4-bicyclo[3.1.0]hexanyl]methanol

C13H17N5O2 (275.1382182)


   
   

triethyl 1-aminopropane-1,2,3-tricarboxylate

triethyl 1-aminopropane-1,2,3-tricarboxylate

C12H21NO6 (275.13688060000004)


   

(2E,4E,6E)-N-isopentyl-7-(2-thienyl)-2,4,6-heptatrienamide

(2E,4E,6E)-N-isopentyl-7-(2-thienyl)-2,4,6-heptatrienamide

C16H21NOS (275.1343776)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Glutaryl-carnitine; AIF; CE00; CorrDec

Glutaryl-carnitine; AIF; CE00; CorrDec

C12H21NO6 (275.13688060000004)


   

Glutaryl-carnitine; AIF; CE10; CorrDec

Glutaryl-carnitine; AIF; CE10; CorrDec

C12H21NO6 (275.13688060000004)


   

Glutaryl-carnitine; AIF; CE30; CorrDec

Glutaryl-carnitine; AIF; CE30; CorrDec

C12H21NO6 (275.13688060000004)


   

Glutaryl-carnitine; AIF; CE0; MS2Dec

Glutaryl-carnitine; AIF; CE0; MS2Dec

C12H21NO6 (275.13688060000004)


   

Glutaryl-carnitine; AIF; CE10; MS2Dec

Glutaryl-carnitine; AIF; CE10; MS2Dec

C12H21NO6 (275.13688060000004)


   

Glutaryl-carnitine; AIF; CE30; MS2Dec

Glutaryl-carnitine; AIF; CE30; MS2Dec

C12H21NO6 (275.13688060000004)


   

Glutarylcarnitine

Glutarylcarnitine

C12H21NO6 (275.13688060000004)


Glutarylcarnitine is the diagnostic metabolite for malonic aciduria and glutaric aciduria type I monitored in most tandem mass spectrometry newborn screening programmes.

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Ε-(γ-glu)-LYS

Ε-(γ-glutamyl)lysine isodipeptide

C11H21N3O5 (275.1481136)


   

Glutamyllysine

N2-L-alpha-Glutamyl-lysine

C11H21N3O5 (275.1481136)


   

CAR 5:1;O2

3-[(4-carboxybutanoyl)oxy]-4-(trimethylammonio)butanoate;glutarylcarnitine

C12H21NO6 (275.13688060000004)


   

Pyrido[2,3-b][1,6]naphthyridine, 6,7,8,9-tetrahydro-7-(phenylmethyl)- (9CI)

Pyrido[2,3-b][1,6]naphthyridine, 6,7,8,9-tetrahydro-7-(phenylmethyl)- (9CI)

C18H17N3 (275.1422402)


   

[7-methyl-1-[(2-methylpropan-2-yl)oxycarbonyl]indol-2-yl]boronic acid

[7-methyl-1-[(2-methylpropan-2-yl)oxycarbonyl]indol-2-yl]boronic acid

C14H18BNO4 (275.1328818)


   

[4-(Diphenylamino)phenyl]methanol

[4-(Diphenylamino)phenyl]methanol

C19H17NO (275.1310072)


   

benzphetamine hydrochloride

benzyl-methyl-[(2S)-1-phenylpropan-2-yl]azanium;chloride

C17H22ClN (275.14406820000005)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents C78272 - Agent Affecting Nervous System > C29728 - Anorexiant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators

   

3-nitro-trans-beta-styrylboronic acid pinacol ester

3-nitro-trans-beta-styrylboronic acid pinacol ester

C14H18BNO4 (275.1328818)


   

Ethanol,2,2,2-nitrilotris-, 1,1,1-triacetate

Ethanol,2,2,2-nitrilotris-, 1,1,1-triacetate

C12H21NO6 (275.13688060000004)


   
   

(2,4-DIMETHOXY-BENZYL)-(4-FLUORO-BENZYL)-AMINE

(2,4-DIMETHOXY-BENZYL)-(4-FLUORO-BENZYL)-AMINE

C16H18FNO2 (275.13215)


   

4,4,5,5-tetramethyl-2-[(E)-2-(4-nitrophenyl)ethenyl]-1,3,2-dioxaborolane

4,4,5,5-tetramethyl-2-[(E)-2-(4-nitrophenyl)ethenyl]-1,3,2-dioxaborolane

C14H18BNO4 (275.1328818)


   

6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2H-benzo[b][1,4]oxazin-3(4H)-one

6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2H-benzo[b][1,4]oxazin-3(4H)-one

C14H18BNO4 (275.1328818)


   
   

3-(4-BENZYL-PHENOXY)-PHENYLAMINE

3-(4-BENZYL-PHENOXY)-PHENYLAMINE

C19H17NO (275.1310072)


   

4-Methoxytriphenylamine

4-Methoxytriphenylamine

C19H17NO (275.1310072)


   

O-Tritylhydroxylamine

O-Tritylhydroxylamine

C19H17NO (275.1310072)


   

(1-(TERT-BUTOXYCARBONYL)-4-METHYL-1H-INDOL-2-YL)BORONIC ACID

(1-(TERT-BUTOXYCARBONYL)-4-METHYL-1H-INDOL-2-YL)BORONIC ACID

C14H18BNO4 (275.1328818)


   
   

3-methoxy-N,N-diphenylaniline

3-methoxy-N,N-diphenylaniline

C19H17NO (275.1310072)


   

5-oxo-DL-proline, compound with DL-lysine (1:1)

5-oxo-DL-proline, compound with DL-lysine (1:1)

C11H21N3O5 (275.1481136)


   

2-(1,2,3,4-TETRAHYDROISOQUINOLIN-1-YL)-1-NAPHTHOL

2-(1,2,3,4-TETRAHYDROISOQUINOLIN-1-YL)-1-NAPHTHOL

C19H17NO (275.1310072)


   

Levalbuterol Hydrochloride

Levalbuterol Hydrochloride

C13H22ClNO3 (275.12881319999997)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist Levalbuterol ((R)-Albuterol) hydrochloride is a short-acting β2-adrenergic receptor agonist and the active (R)-enantiomer of Salbutamol. Levalbuterol hydrochloride is a more potent bronchodilator than Salbutamol and has the potential for the treatment of COPD[1].

   

4-CYANO-3-FLUOROPHENYL TRANS-4-ETHYLCYCLOHEXANECARBOXYLATE

4-CYANO-3-FLUOROPHENYL TRANS-4-ETHYLCYCLOHEXANECARBOXYLATE

C16H18FNO2 (275.13215)


   

ethyl 3-[ethoxycarbonyl-(2-ethoxy-2-oxoethyl)amino]propanoate

ethyl 3-[ethoxycarbonyl-(2-ethoxy-2-oxoethyl)amino]propanoate

C12H21NO6 (275.13688060000004)


   

1-Boc-5-Methyl-1H-indole-2-boronic acid

1-Boc-5-Methyl-1H-indole-2-boronic acid

C14H18BNO4 (275.1328818)


   

1-BOC-6-methylindole-2-boronic acid

1-BOC-6-methylindole-2-boronic acid

C14H18BNO4 (275.1328818)


   

Cipamfylline

Cipamfylline

C13H17N5O2 (275.1382182)


C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor

   

7-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-2H-BENZO[B][1,4]OXAZIN-3(4H)-ONE

7-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-2H-BENZO[B][1,4]OXAZIN-3(4H)-ONE

C14H18BNO4 (275.1328818)


   

Meturedepa

Carbamic acid,N-[bis(2,2-dimethyl-1-aziridinyl)phosphinyl]-, ethyl ester

C11H22N3O3P (275.1398712)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent

   

4,4,4-TRIMETHYL-2,2:6,2-TERPYRIDINE

4,4,4-TRIMETHYL-2,2:6,2-TERPYRIDINE

C18H17N3 (275.1422402)


   

DIETHYL2-(TERT-BUTOXYCARBONYLAMINO)MALONATE

DIETHYL2-(TERT-BUTOXYCARBONYLAMINO)MALONATE

C12H21NO6 (275.13688060000004)


   

Omigapil

Omigapil

C19H17NO (275.1310072)


C471 - Enzyme Inhibitor

   
   

5,6-dimethyl-2-[2-(1-pyrrolidinyl)ethylthio]-1H-benzimidazole

5,6-dimethyl-2-[2-(1-pyrrolidinyl)ethylthio]-1H-benzimidazole

C15H21N3S (275.1456106)


   

L-Serine, glycyl-L-leucyl-

L-Serine, glycyl-L-leucyl-

C11H21N3O5 (275.1481136)


   

L-lysyl-D-glutamic acid

L-lysyl-D-glutamic acid

C11H21N3O5 (275.1481136)


   

lysylglutamic acid, Lys-Glu, H-LYS-GLU-OH, Peptide vilon

lysylglutamic acid, Lys-Glu, H-LYS-GLU-OH, Peptide vilon

C11H21N3O5 (275.1481136)


   

epsilon-(gamma-Glutamyl)-L-lysine

2,6,10-triamino-5-oxoundecanedioic acid

C11H21N3O5 (275.1481136)


   

Lysylglutamic acid

Lysylglutamic acid

C11H21N3O5 (275.1481136)


D020011 - Protective Agents

   
   

[(1S,2S,4S,5S)-2-(6-Aminopurin-9-yl)-5-(hydroxymethyl)-4-bicyclo[3.1.0]hexanyl]methanol

[(1S,2S,4S,5S)-2-(6-Aminopurin-9-yl)-5-(hydroxymethyl)-4-bicyclo[3.1.0]hexanyl]methanol

C13H17N5O2 (275.1382182)


   
   
   
   
   

N-butyl-5-(3,4-dimethylphenyl)-6H-1,3,4-thiadiazin-2-amine

N-butyl-5-(3,4-dimethylphenyl)-6H-1,3,4-thiadiazin-2-amine

C15H21N3S (275.1456106)


   
   
   
   
   
   
   
   

3-[4-[(1S,5R)-3,6-diazabicyclo[3.1.1]heptan-7-yl]phenyl]benzonitrile

3-[4-[(1S,5R)-3,6-diazabicyclo[3.1.1]heptan-7-yl]phenyl]benzonitrile

C18H17N3 (275.1422402)


   
   
   
   
   
   
   
   
   
   
   
   
   

(3R)-3-(4-carboxybutanoyloxy)-4-[methyl-bis(trideuteriomethyl)azaniumyl]butanoate

(3R)-3-(4-carboxybutanoyloxy)-4-[methyl-bis(trideuteriomethyl)azaniumyl]butanoate

C12H21NO6 (275.13688060000004)


   

epsilon-(gamma-Glutamyl)lysine

epsilon-(gamma-Glutamyl)-lysine

C11H21N3O5 (275.1481136)


An N(6)-acyl-L-lysine derivative in which the acyl group is specified as gamma-glutamyl.

   

epsilon-(gamma-L-Glutamyl)-L-lysine

epsilon-(gamma-L-Glutamyl)-L-lysine

C11H21N3O5 (275.1481136)


   

Lys-glu

Lys-glu

C11H21N3O5 (275.1481136)


A dipeptide formed from L-lysine and L-glutamic acid residues.

   

Glu-Lys

H-Glu-Lys-OH

C11H21N3O5 (275.1481136)


A dipeptide composed of L-glutamic acid and L-lysine joined by a peptide linkage.

   

Gamma-glutamyl-Lysine

Gamma-glutamyl-Lysine

C11H21N3O5 (275.1481136)


   

O-glutarylcarnitine

O-glutarylcarnitine

C12H21NO6 (275.13688060000004)


An O-acylcarnitine having glutaryl as the acyl substituent.

   

(3S)-3-[(4-carboxybutanoyl)oxy]-4-(trimethylazaniumyl)butanoate

(3S)-3-[(4-carboxybutanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C12H21NO6 (275.13688060000004)


   

O-Glutaroyl-L-carnitine

O-Glutaroyl-L-carnitine

C12H21NO6 (275.13688060000004)


An O-acyl-L-carnitine in which the acyl group is specified as glutaroyl.

   

epsilon-(gamma-glutamyl)lysine dizwitterion

epsilon-(gamma-glutamyl)lysine dizwitterion

C11H21N3O5 (275.1481136)


An L-alpha-amino acid zwitterion that is the dizwitterionic form of epsilon-(gamma-glutamyl)lysine obtained by migration of protons from both carboxy groups to the amino groups; major species at pH 7.3.

   
   

(2s)-6-amino-2-{[(4s)-4-amino-4-carboxy-1-hydroxybutylidene]amino}hexanoic acid

(2s)-6-amino-2-{[(4s)-4-amino-4-carboxy-1-hydroxybutylidene]amino}hexanoic acid

C11H21N3O5 (275.1481136)


   

6-amino-2-[(4-amino-4-carboxy-1-hydroxybutylidene)amino]hexanoic acid

6-amino-2-[(4-amino-4-carboxy-1-hydroxybutylidene)amino]hexanoic acid

C11H21N3O5 (275.1481136)


   

(2e,4e,6e)-n-(3-methylbutyl)-7-(thiophen-2-yl)hepta-2,4,6-trienimidic acid

(2e,4e,6e)-n-(3-methylbutyl)-7-(thiophen-2-yl)hepta-2,4,6-trienimidic acid

C16H21NOS (275.1343776)