Exact Mass: 189.0781182
Exact Mass Matches: 189.0781182
Found 293 metabolites which its exact mass value is equals to given mass value 189.0781182
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Methyl indole-3-acetate
Indole-3-methyl acetate, also known as methyl indole-3-acetate (methyl-IAA), is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 30120222). Pediatric enthesitis-related arthritis (ERA) patients (i.e. spondyloarthropathy associated with inflammatory bowel disease) have intestinal inflammation and decreased gut microbial diversity. Such alterations in the gut microbiota resulted in the reduction of tryptophan metabolism and several tryptophan metabolites in pediatric ERA fecal samples, including indole-3-methyl acetate (PMID: 27786174). Indole-3-methyl acetate is found in apple, and has been isolated from immature seeds of beach pea (Lathyrus maritimus), Vicia amurensis, wild soybean (Glycine soja), lobiya (Vigna catiang var. sinensis) and hyacinth bean (Dolichos lablab). Isolated from immature seeds of beach pea (Lathyrus maritimus), Vicia amurensis, wild soybean (Glycine soja), lobiya (Vigna catiang variety sinensis) and hyacinth bean (Dolichos lablab). Indole-3-methyl acetate is found in many foods, some of which are gram bean, yellow wax bean, common bean, and sweet orange. Methyl 2-(1H-indol-3-yl)acetate is an endogenous metabolite.
Backebergine
A member of the class of isoquinolines carrying two methoxy substituents at positions 6 and 7.
Phensuximide
Phensuximide is an anticonvulsant in the succinimide class. It suppresses the paroxysmal three cycle per second spike and wave EEG pattern associated with lapses of consciousness in petit mal seizures. The frequency of attacks is reduced by depression of nerve transmission in the motor cortex. N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AD - Succinimide derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent
3-Indolepropionic acid
3-Indolepropionic acid is shown to be a powerful antioxidant and has potential in the treatment for Alzheimer’s disease.
Indole-3-propionic acid
Indole-3-propionic acid (IPA, indole-3-propionate, or indole propionic acid), is a reductive product of tryptophan formed by bacteria in the gastrointestinal tract of mammals and birds (PMID:29168502). It is endogenously produced by human microbiota and has only been detected in vivo (PMID:19234110). While many microbial metabolites produced in the gut are toxic or act as uremic toxins (when they are reabsorbed through the gut epithelia), indole-3-propionic acid is a very beneficial microbial metabolite (PMID:30914514, 30862081, 29238104). In limited studies, urinary IPA correlates positively with disease and it remains unclear if this represents host bacteria responding to pathology via the production of IPA, or intestinal permeability changes leading to higher absorption and excretion of IPA, or inflammatory changes within kidneys leading to high excretion of IPA (PMID:32132996). Indole-3-propionic acid is a remarkably strong antioxidant (PMID:10721080). It is an even more potent scavenger of hydroxyl radicals than melatonin, the most potent scavenger of hydroxyl radicals synthesized by the human body. Similar to melatonin but unlike other antioxidants, indole-3-propionic acid scavenges radicals without subsequently generating reactive and pro-oxidant intermediate compounds (PMID:9928448, 10419516). Indole-3-propionic acid has been shown to prevent oxidative stress and the death of primary neurons and neuroblastoma cells exposed to the amyloid beta-protein in the form of amyloid fibrils, one of the most prominent neuropathologic features of Alzheimers disease. 3-Indolepropionic acid also shows a strong level of neuroprotection in two other paradigms of oxidative stress. (PMID 10419516) More recently it has been found that higher indole-3-propionic acid levels in serum/plasma are associated with a reduced likelihood of type 2 diabetes and with higher levels of consumption of fibre-rich foods (PMID:28397877). Studies have shown that serum levels of indole-3-propionic acid are positively correlated with dietary fibre intake and negatively correlated with C-reactive protein levels (PMID:29795366). Indole-3-propionic acid is a marker for the presence of Clostridium sporogenes in the gut. Higher levels are associated with higher levels of Clostridium sporogenes (PMID:7378938). In addition to its useful physiological role in mammals, indole-3-propionic acid is a plant hormone with functions similar to indole-3-acetic acid (or IAA), the major plant auxin. Recent studies have shed some light on additional mechanisms of action of IPA. In the intestine, IPA could serve as a ligand to an adopted orphan nuclear receptor, Pregnane X receptor (PXR) and act as an anti-inflammatory agent (PMID:25065623). This property has allowed investigators to develop more potent analogs targeting PXR (PMID:32153125). Other tissues may also be targeted by IPA in a similar manner (PMID:31211619). Indole-3-propionate (IPA), a deamination product of tryptophan formed by symbiotic bacteria in the gastrointestinal tract of mammals and birds. 3-Indolepropionic acid has been shown to prevent oxidative stress and death of primary neurons and neuroblastoma cells exposed to the amyloid beta-protein in the form of amyloid fibrils, one of the most prominent neuropathologic features of Alzheimers disease. 3-Indolepropionic acid also shows a strong level of neuroprotection in two other paradigms of oxidative stress. (PMID: 10419516) [HMDB]. 1H-Indole-3-propanoic acid is found in common pea. 3-Indolepropionic acid is shown to be a powerful antioxidant and has potential in the treatment for Alzheimer’s disease.
Glycylglycylglycine
Glycylglycylglycine, also known as GGG or triglycine, belongs to the class of organic compounds known as oligopeptides. These are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds. A tripeptide in which three glycine units are linked via peptide bonds in a linear sequence. Glycylglycylglycine has been detected, but not quantified, in fruits. This could make glycylglycylglycine a potential biomarker for the consumption of these foods. Glycylglycylglycine is a potentially toxic compound.
S-Prenyl-L-cysteine
S-Prenyl-L-cysteine is catalysed by prenylcysteine oxidase to form L-cysteine.A flavoprotein (FAD). Cleaves the thioether bond of S-prenyl-L-cysteines, such as S-farnesylcysteine and S-geranylgeranylcysteine. N-Acetyl-prenylcysteine and. prenylcysteinyl peptides are not substrates. This reaction may represent the final. step in the degradation of prenylated proteins in mammalian tissues. The enzyme is originally thought to be a simple lyase so it had been classified as. EC 4.4.1.18. S-Prenyl-L-cysteine is catalysed by prenylcysteine oxidase to form L-cysteine.A flavoprotein (FAD). Cleaves the thioether bond of S-prenyl-L-cysteines, such as S-farnesylcysteine and S-geranylgeranylcysteine. N-Acetyl-prenylcysteine and
Asparaginylglycine
Asparaginylglycine is a dipeptide composed of asparagine and glycine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.
Glycyl-Asparagine
Glycyl-Asparagine is a dipeptide composed of glycine and asparagine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite.
Caracemide
C471 - Enzyme Inhibitor > C2150 - Ribonucleotide Reductase Inhibitor
3-Indolepropionic acid
3-Indolepropionic acid is shown to be a powerful antioxidant and has potential in the treatment for Alzheimer’s disease.
(R)-2-cyano-1-phenylethyl acetate|(S)-2-cyano-1-phenylethyl acetate|(S)-3-acetoxy-3-phenylpropanenitrile
3-Methyl-5-(2-hydroxy-5-methylphenyl)-isoxazol|3-Methyl-5-(2-hydroxy-5-methylphenyl)isoxazol|3-Methyl-5-(2hydroxy-5-methylphenyl)isoxazol|3-Methyl-5-<2-hydroxy-5-methyl-phenyl>-isoxazol|4-methyl-2-(3-methyl-isoxazol-5-yl)-phenol
Indole-3-methyl acetate
Methyl 2-(1H-indol-3-yl)acetate is an endogenous metabolite.
Methyl indole-3-acetate
Methyl 2-(1H-indol-3-yl)acetate is an endogenous metabolite.
Asn-gly
A dipeptide composed of L-asparagine and glycine joined by a peptide linkage.
gly-asn
A dipeptide formed from glycine and L-asparagine residues.
Meiaa
Methyl 2-(1H-indol-3-yl)acetate is an endogenous metabolite.
(1S)-1-(3-fluoro-2-methylphenyl)ethanamine,hydrochloride
C9H13ClFN (189.07205000000002)
(S)-1-(4-Fluoro-3-methylphenyl)ethanamine hydrochloride
C9H13ClFN (189.07205000000002)
ETHYL PHENYLCYANOACETATE
An alpha-substituted cyanoacetate ester that consists of ethyl cyanoacetate bearing an alpha-phenyl substituent.
(R)-1-(2-Fluorophenyl)propan-1-amine hydrochloride
C9H13ClFN (189.07205000000002)
(1S)-1-(5-fluoro-2-methylphenyl)ethanamine,hydrochloride
C9H13ClFN (189.07205000000002)
(S)-1-(2-Fluoro-5-Methylphenyl)ethanamine hydrochloride
C9H13ClFN (189.07205000000002)
1-(METHOXYIMINO)-2,3-DIHYDRO-1H-INDENE-5-CARBALDEHYDE
(1R)-1-(5-fluoro-2-methylphenyl)ethanamine,hydrochloride
C9H13ClFN (189.07205000000002)
(R)-1-(2-Fluoro-5-Methylphenyl)ethanamine hydrochloride
C9H13ClFN (189.07205000000002)
(S)-1-(2-Fluorophenyl)propan-1-amine hydrochloride
C9H13ClFN (189.07205000000002)
1-(4-fluorophenyl)propan-2-amine hydrochloride
C9H13ClFN (189.07205000000002)
1H-Indole-3-carboxylic acid, 6-Methyl-, Methyl ester
(1R)-1-(3-fluoro-2-methylphenyl)ethanamine,hydrochloride
C9H13ClFN (189.07205000000002)
ALLYL-(3-METHYL-1,1-DIOXO-TETRAHYDRO-1LAMBDA6-THIOPHEN-3-YL)-AMINE
1,5-dimethyl-1H-indole-2-carboxylic acid(SALTDATA: FREE)
Carbamic acid,N-(4-methylphenyl)-, 2-propyn-1-yl ester
3-Fluoroamphetamine (hydrochloride)
C9H13ClFN (189.07205000000002)
3-Isocyanatopropyltrimethoxysilane
C7H15NO3Si (189.08211599999998)
Benzenemethanamine, 4-fluoro-N,alpha-dimethyl- (9CI)
C9H13ClFN (189.07205000000002)
(R)-1-(4-Fluoro-3-methylphenyl)ethanamine hydrochloride
C9H13ClFN (189.07205000000002)
2,2-DIMETHYL-2,3-DIHYDRO-1-BENZOFURAN-7-YL ISOCYANATE
Trimethylsilyl (acetylamino)acetate
C7H15NO3Si (189.08211599999998)
(3E)-3-[(phenylamino)methylidene]dihydrofuran-2(3H)-one
(2S)-4-amino-2-[(azaniumylacetyl)amino]-4-oxobutanoate
(R)-3-[(R)-3-hydroxybutanoyloxy]butanoate
A hydroxy monocarboxylic acid anion that is the conjugate base of (R)-3-[(R)-3-hydroxybutanoyloxy]butanoic acid
S-Prenyl-L-cysteine
A prenylcysteine where the prenyl moiety is attached to the side-chain sulfur atom of L-cysteine.
3-Hydroxy-2-isopropyl-4-methoxy-4-oxobutanoate
The conjugate base of a succinic acid monoester having an isopropyl substituent at the 2-position and a hydroxy substituent at the 3-position.
3-Methyl-4-oxo-1,2,3,4-tetrahydroquinoline-2-carbaldehyde
Phensuximide
N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AD - Succinimide derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent
methyl 2-(1H-indol-3-yl)acetate
Methyl 2-(1H-indol-3-yl)acetate is an endogenous metabolite.
Gly-Asn zwitterion
A peptide zwitterion obtained by transfer of a proton from the carboxy to the amino terminus of Gly-Asn.
3-(1H-Indol-3-yl)propanoic acid
An indol-3-yl carboxylic acid that is propionic acid substituted by a 1H-indol-3-yl group at position 3.
S-prenyl-L-cysteine zwitterion
An L-alpha-amino acid zwitterion obtained by transfer of a proton from the carboxy to the amino group of S-prenyl-L-cysteine; major species at pH 7.3.