Exact Mass: 188.1049
Exact Mass Matches: 188.1049
Found 129 metabolites which its exact mass value is equals to given mass value 188.1049
,
within given mass tolerance error 0.001 dalton. Try search metabolite list with more accurate mass tolerance error
0.0002 dalton.
Azelaic acid
Nonanedioic acid is an alpha,omega-dicarboxylic acid that is heptane substituted at positions 1 and 7 by carboxy groups. It has a role as an antibacterial agent, an antineoplastic agent, a dermatologic drug and a plant metabolite. It is a dicarboxylic fatty acid and an alpha,omega-dicarboxylic acid. It is a conjugate acid of an azelaate(2-) and an azelaate. Azelaic acid is a saturated dicarboxylic acid found naturally in wheat, rye, and barley. It is also produced by Malassezia furfur, also known as Pityrosporum ovale, which is a species of fungus that is normally found on human skin. Azelaic acid is effective against a number of skin conditions, such as mild to moderate acne, when applied topically in a cream formulation of 20\\\\\%. It works in part by stopping the growth of skin bacteria that cause acne, and by keeping skin pores clear. Azelaic acids antimicrobial action may be attributable to inhibition of microbial cellular protein synthesis. Azelaic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). The physiologic effect of azelaic acid is by means of Decreased Protein Synthesis, and Decreased Sebaceous Gland Activity. Azelaic Acid is a naturally occurring dicarboxylic acid produced by Malassezia furfur and found in whole grain cereals, rye, barley and animal products. Azelaic acid possesses antibacterial, keratolytic, comedolytic, and anti-oxidant activity. Azelaic acid is bactericidal against Proprionibacterium acnes and Staphylococcus epidermidis due to its inhibitory effect on the synthesis of microbial cellular proteins. Azelaic acid exerts its keratolytic and comedolytic effects by reducing the thickness of the stratum corneum and decreasing the number of keratohyalin granules by reducing the amount and distribution of filaggrin in epidermal layers. Azelaic acid also possesses a direct anti-inflammatory effect due to its scavenger activity of free oxygen radical. This drug is used topically to reduce inflammation associated with acne and rosacea. Azelaic acid is a saturated dicarboxylic acid found naturally in wheat, rye, and barley. It is a natural substance that is produced by Malassezia furfur (also known as Pityrosporum ovale), a yeast that lives on normal skin. It is effective against a number of skin conditions, such as mild to moderate acne, when applied topically in a cream formulation of 20\\\\\%. It works in part by stopping the growth of skin bacteria that cause acne, and by keeping skin pores clear. Azelaic acids antimicrobial action may be attributable to inhibition of microbial cellular protein synthesis. See also: Azelaic acid; niacinamide (component of) ... View More ... Azelaic acid (AZA) is a naturally occurring saturated nine-carbon dicarboxylic acid (COOH (CH2)7-COOH). It possesses a variety of biological actions both in vitro and in vivo. Interest in the biological activity of AZA arose originally out of studies of skin surface lipids and the pathogenesis of hypochromia in pityriasis versicolor infection. Later, it was shown that Pityrosporum can oxidize unsaturated fatty acids to C8-C12 dicarboxylic acids that are cornpetitive inhibitors of tyrosinase in vitro. Azelaic acid was chosen for further investigation and development of a new topical drug for treating hyperpigmentary disorders for the following reasons: it possesses a middle-range of antityrosinase activity, is inexpensive, and more soluble to be incorporated into a base cream than other dicarboxylic acids. Azelaic acid is another option for the topical treatment of mild to moderate inflammatory acne vulgaris. It offers effectiveness similar to that of other agents without the systemic side effects of oral antibiotics or the allergic sensitization of topical benzoyl peroxide and with less irritation than tretinoin. Azelaic acid is less expensive than certain other prescription acne preparations, but it is much more expensive than nonprescription benzoyl peroxide preparations. Whether it is safe and effective when used in combination with other agents is not known. (PMID: 7737781, 8961845). An alpha,omega-dicarboxylic acid that is heptane substituted at positions 1 and 7 by carboxy groups. Plants biology In plants, azelaic acid serves as a "distress flare" involved in defense responses after infection.[7] It serves as a signal that induces the accumulation of salicylic acid, an important component of a plant's defensive response.[8] Human biology The mechanism of action in humans is thought to be through the inhibition of hyperactive protease activity that converts cathelicidin into the antimicrobial skin peptide LL-37.[9] Polymers and related materials Esters of this dicarboxylic acid find applications in lubrication and plasticizers. In lubricant industries it is used as a thickening agent in lithium complex grease. With hexamethylenediamine, azelaic acid forms Nylon-6,9, which finds specialized uses as a plastic.[4] Medical Azelaic acid is used to treat mild to moderate acne, both comedonal acne and inflammatory acne.[10][11] It belongs to a class of medication called dicarboxylic acids. It works by killing acne bacteria that infect skin pores. It also decreases the production of keratin, which is a natural substance that promotes the growth[clarification needed] of acne bacteria.[12] Azelaic acid is also used as a topical gel treatment for rosacea, due to its ability to reduce inflammation.[11] It clears the bumps and swelling caused by rosacea. In topical pharmaceutical preparations and scientific research AzA is typically used in concentrations between 15\\\% and 20\\\% but some research demonstrates that in certain vehicle formulations the pharmaceutical effects of 10\\\% Azelaic acid has the potential to be fully comparable to that of some 20\\\% creams.[13] Acne treatment Azelaic acid is effective for mild to moderate acne when applied topically at a 15\\\%-20\\\% concentration.[14][15][16][17] In patients with moderate acne, twice daily application over 3 months of 20\\\% AzA significantly reduced the number of comedones, papules, and pustules;[18][19] at this strength, it’s considered to be as effective as benzoyl peroxide 5\\\%, tretinoin 0.05\\\%, erythromycin 2\\\%, and oral tetracycline at 500 mg-1000 mg.[20][21] In a comparative review of effects of topical AzA, Salicylic acid, Nicotinamide, Sulfur, Zinc, and alpha-hydroxy acid, AzA had more high-quality evidence of effectiveness than the rest.[22] Results can be expected after 4 weeks of twice-daily treatment. The effectiveness of long term use is unclear, but it’s been recommended that AzA be used for at least 6 months continuously for maintenance.[20] Whitening agent Azelaic acid is used for treatment of skin pigmentation, including melasma and postinflammatory hyperpigmentation, particularly in those with darker skin types. It has been recommended as an alternative to hydroquinone.[23] As a tyrosinase inhibitor,[5] azelaic acid reduces synthesis of melanin.[24] According to one report in 1988, azelaic acid in combination with zinc sulfate in vitro was found to be a potent (90\\\% inhibition) 5α-reductase inhibitor, similar to the hair loss drugs finasteride and dutasteride.[25] In vitro research during mid-1980s evaluating azelaic acid's depigmenting (whitening) capability concluded it is effective (cytotoxic to melanocytes) at only high concentrations.[26] A 1996 review claimed 20\\\% AzA is as potent as 4\\\% hydroquinone after a period of application of three months without the latter's adverse effects and even more effective if applied along with tretinoin for the same period of time.[27][19] Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2]. Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2].
Eucommiol
Eucommiol is an alicyclic compound that is cyclopent-3-en-1-ol carrying additional hydroxymethyl substituents at positions 3 and 4 as well as a 2-hydroxyethyl substituent at position 2 (the 1R,2R-diastereomer). It has a role as a sedative and a plant metabolite. It is a tetrol, a primary allylic alcohol and an alicyclic compound. Eucommiol is a natural product found in Aucuba japonica, Vitex trifolia, and other organisms with data available. An alicyclic compound that is cyclopent-3-en-1-ol carrying additional hydroxymethyl substituents at positions 3 and 4 as well as a 2-hydroxyethyl substituent at position 2 (the 1R,2R-diastereomer).
Nonate
Nonic acid or the anion, nonate, is a derivative of succinic acid, which is a dicarboxylic acid. The anion, succinate, is a component of the citric acid cycle capable of donating electrons to the electron transfer chain. Succinate dehydrogenase (SDH) plays an important role in the mitochondria, being both part of the respiratory chain and the Krebs cycle. SDH with a covalently attached FAD prosthetic group, binds enzyme substrates (succinate and fumarate) and physiological regulators (oxaloacetate and ATP). Oxidizing succinate links SDH to the fast-cycling Krebs cycle portion where it participates in the breakdown of acetyl-CoA throughout the whole Krebs cycle. The succinate can readily be imported into the mitochondrial matrix by the n-butylmalonate- (or phenylsuccinate-) sensitive dicarboxylate carrier in exchange with inorganic phosphate or another organic acid, e. g. malate. (PMID 16143825) Mutations in the four genes encoding the subunits of the mitochondrial respiratory chain succinate dehydrogenase are associated with a wide spectrum of clinical presentations (i.e.: Huntingtons disease. (PMID 11803021) [HMDB] Nonic acid or the anion, nonate, is a derivative of succinic acid, which is a dicarboxylic acid. The anion, succinate, is a component of the citric acid cycle capable of donating electrons to the electron transfer chain. Succinate dehydrogenase (SDH) plays an important role in the mitochondria, being both part of the respiratory chain and the Krebs cycle. SDH with a covalently attached FAD prosthetic group, binds enzyme substrates (succinate and fumarate) and physiological regulators (oxaloacetate and ATP). Oxidizing succinate links SDH to the fast-cycling Krebs cycle portion where it participates in the breakdown of acetyl-CoA throughout the whole Krebs cycle. The succinate can readily be imported into the mitochondrial matrix by the n-butylmalonate- (or phenylsuccinate-) sensitive dicarboxylate carrier in exchange with inorganic phosphate or another organic acid, e. g. malate. (PMID 16143825) Mutations in the four genes encoding the subunits of the mitochondrial respiratory chain succinate dehydrogenase are associated with a wide spectrum of clinical presentations (i.e.: Huntingtons disease. (PMID 11803021).
3-Methylsuberic acid
3-Methylsuberic acid belongs to the family of Branched Fatty Acids. These are fatty acids containing a branched chain.
cis- and trans-Ethyl 2,4-dimethyl-1,3-dioxolane-2-acetate
cis- and trans-Ethyl 2,4-dimethyl-1,3-dioxolane-2-acetate is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive .
(+/-)-Ethyl 3-acetoxy-2-methylbutyrate
(+/-)-Ethyl 3-acetoxy-2-methylbutyrate is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive .
(+/-)-Methyl 5-acetoxyhexanoate
(+/-)-Methyl 5-acetoxyhexanoate is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive .
Butyl ethyl malonate
Butyl ethyl malonate is a flavouring agent Flavouring agent
2,4-Dimethylpimelic acid
2,4-Dimethylpimelic acid belongs to the family of Branched Fatty Acids. These are fatty acids containing a branched chain.
Diethyl methylsuccinate
Diethyl methylsuccinate belongs to the family of Fatty Acid Esters. These are carboxylic ester derivatives of a fatty acid.
Diethyl glutarate
Diethyl glutarate belongs to the family of Fatty Acid Esters. These are carboxylic ester derivatives of a fatty acid.
3-(2-Hydroxyethyl)-5-(2-hydroxypropyl)-dihydrofuran-2(3H)-one
3-(2-Hydroxyethyl)-5-(2-hydroxypropyl)-4,5-dihydrofuran-2(3H)-one
2-Methylene-3-hydroperoxybutyric acid 2-methylpropyl ester
communiol C|{(3S,5S)-5-[(S)-1-hydroxypropyl]tetrahydrofuran-3-yl}acetic acid
Azelaic Acid
D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000970 - Antineoplastic Agents D003879 - Dermatologic Agents Annotation level-2 Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2]. Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2].
azelate
Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2]. Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2].
Methyl-5-deoxy-2,3-O-isopropylidene-b-D-ribofuranoside
Methyl-5-deoxy-2,3-O-isopropylidene-D-ribofuranoside
4-[(2,3-EPOXYPROPOXY)METHYL]-2,2-DIMETHYL-1,3-DIOXOLANE
Pentanedioic acid,2,4-dimethyl-, 1,5-dimethyl ester
2-Methylbutyl 2-acetyloxyacetate
An acetate ester obtained by the formal condensation of the carboxy group of (acetyloxy)acetic acid with 2-methylbutanol.
(4S,5S)-4,5-Bis(methoxymethyl)-2-vinyl-1,3-dioxolane
(4S,5S)-2-Ethylidene-4,5-bis(methoxymethyl)-1,3-dioxolane
Diethyl glutarate
A diester obtained by the formal condensation of carboxy groups of glutaric acid with two molecules of ethanol respectively.
(1s,7s)-1-(2-hydroxyethyl)-7-(hydroxymethyl)-2-oxabicyclo[2.2.1]heptan-7-ol
1-(2-hydroxyethyl)-7-(hydroxymethyl)-2-oxabicyclo[2.2.1]heptan-7-ol
2,4 azelaic acid
{"Ingredient_id": "HBIN004290","Ingredient_name": "2,4 azelaic acid","Alias": "NA","Ingredient_formula": "C9H16O4","Ingredient_Smile": "C(CCCC(=O)O)CCCC(=O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "42326","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
2-T-butyl-5-methyl-[1,3]dioxolane-4-carboxylic acid
{"Ingredient_id": "HBIN006828","Ingredient_name": "2-T-butyl-5-methyl-[1,3]dioxolane-4-carboxylic acid","Alias": "NA","Ingredient_formula": "C9H16O4","Ingredient_Smile": "CC1C(OC(O1)C(C)(C)C)C(=O)O","Ingredient_weight": "188.22 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "40849","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "582907","DrugBank_id": "NA"}
3-(2'-hydroxyethyl)-5-(2''-hydroxypropyl)-dihydrofuran-2(3h)-one
{"Ingredient_id": "HBIN007044","Ingredient_name": "3-(2'-hydroxyethyl)-5-(2''-hydroxypropyl)-dihydrofuran-2(3h)-one","Alias": "NA","Ingredient_formula": "C9H16O4","Ingredient_Smile": "CC(CC1CC(C(=O)O1)CCO)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "10104","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
4,4-dimethyl-1,7-heptanedioicacid
{"Ingredient_id": "HBIN009945","Ingredient_name": "4,4-dimethyl-1,7-heptanedioicacid","Alias": "NA","Ingredient_formula": "C9H16O4","Ingredient_Smile": "CC(C)(CCC(=O)O)CCC(=O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "6356","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
7-hydroxy-10-deoxyeucommiol
{"Ingredient_id": "HBIN013197","Ingredient_name": "7-hydroxy-10-deoxyeucommiol","Alias": "NA","Ingredient_formula": "C9H16O4","Ingredient_Smile": "CC1=C(C(C(C1O)O)CCO)CO","Ingredient_weight": "188.22 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "9987","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "641677","DrugBank_id": "NA"}