Exact Mass: 1616.9721742

Exact Mass Matches: 1616.9721742

Found 5 metabolites which its exact mass value is equals to given mass value 1616.9721742, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Ganglioside GM1 (d18:0/23:0)

(2S,4S,5R)-2-{[(2S,3R,4R,5S,6R)-2-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-6-{[(2S,3R)-3-hydroxy-2-[(1-hydroxytricosylidene)amino]octadecyl]oxy}-2-(hydroxymethyl)oxan-3-yl]oxy}-3-hydroxy-5-{[(2S,3R,4R,5R,6R)-5-hydroxy-6-(hydroxymethyl)-3-(2-oxopropyl)-4-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-(hydroxymethyl)oxan-4-yl]oxy}-4-hydroxy-5-[(1-hydroxyethylidene)amino]-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylate

C79H144N2O31 (1616.9752554)


Ganglioside GM1 (d18:0/23:0) is a ganglioside. A ganglioside is a compound composed of a glycosphingolipid (ceramide and oligosaccharide) with one or more sialic acids (AKA n-acetylneuraminic acid, NANA) linked on the sugar chain. The 60+ known gangliosides differ mainly in the position and number of NANA residues. It is a component of the cell plasma membrane that modulates cell signal transduction events. It appears that they concentrate in lipid rafts. They have recently been found to be highly important in immunology. Natural and semisynthetic gangliosides are considered possible therapeutics for neurodegenerative disorders. Gangliosides are more complex glycosphingolipids in which oligosaccharide chains containing N-acetylneuraminic acid (NeuNAc) are attached to a ceramide. NeuNAc, an acetylated derivative of the carbohydrate sialic acid, makes the head groups of Gangliosides anionic. NB: the M in GM2 stands for monosialo, i.e., one NeuNAc residue. GM2 is the second monosialo ganglioside characterized, thus the subscript 2. Their structural diversity results from variation in the composition and sequence of the sugar residues. In all Gangliosides, the ceramide is linked through its C-1 to a beta-glucosyl residue, which, in turn, is bound to a beta-galactosyl residue. (Wikipedia) Particularly, Ganglioside GM1 (d18:0/23:0) is a GM1 Ganglioside. GM1 (monosialotetrahexosylganglioside), the prototype ganglioside, is a member of the ganglio series of gangliosides which contain one sialic acid residue. GM1 has important physiological properties and impacts neuronal plasticity and repair mechanisms, and the release of neurotrophins in the brain. Besides its function in the physiology of the brain, GM1 acts as the site of binding for both Cholera toxin and E. coli heat-labile enterotoxin (Travellers diarrhea).[1][2]Antibodies to GM1 are increased in Guillain-Barre syndrome, dementia and lupus but their function is not clear.[3] There is some evidence to suggest these antibodies are associated with diarrhea in Guillain-Barre syndrome.[4]Gangliosides are glycosphingolipids. There are four types of glycosphingolipids, the cerebrosides, sulfatides, globosides and gangliosides. Gangliosides are very similar to globosides except that they also contain N-acetyl neuraminic acid (NANA) in varying amounts. The specific names for the gangliosides provide information about their structure. The letter G refers to ganglioside, and the subscripts M, D, T and Q indicate that the molecule contains mono-, di-, tri and quatra-sialic acid. The numbered subscripts 1, 2 and 3 refer to the carbohydrate sequence that is attached to the ceramide. In particular, 1 stands for GalGalNAcGalGlc-ceramide, 2 stands for GalNAcGalGlc-ceramide and 3 stands for GalGlc-ceramide. Deficiencies in lysosomal enzymes that degrade the carbohydrate portions of various gangliosides are responsible for a number of lysosomal storage diseases such as Tay-Sachs disease, Sandhoff disease, and GM1 gangliosidosis. The carbohydrate portion of the ganglioside GM1 is the site of attachment of cholera toxin, the protein secreted by Vibrio cholerae. Ganglioside GM1 (d18:0/23:0) is a ganglioside. Ganglioside is a compound composed of a glycosphingolipid (ceramide and oligosaccharide) with one or more sialic acids (AKA n-acetylneuraminic acid, NANA) linked on the sugar chain. The 60+ known gangliosides differ mainly in the position and number of NANA residues.

   

CL(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[[(2S)-3-[[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C95H142O17P2 (1616.9721742)


CL(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) contains one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C1 position, three chains of (4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl) at the C2, C3 and C4 positions fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2R)-3-[[(2S)-3-[[(2R)-2,3-bis[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy]propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C95H142O17P2 (1616.9721742)


CL(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) contains three chains of (4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl) at the C1, C3 and C4 positions, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C2 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

Hex(3)-HexNAc-KDN-Cer 44:1;O2

KDN-(2-6)-neolactotetraosylceramide/sialyl-(2-6)-paragloboside(d18:1/26:0)

C79H144N2O31 (1616.9752554)


   

KDN-GM1(d18:1/26:0)

Galbeta1-3GalNAcbeta1-4(KDNalpha2-3)Galbeta1-4Glcbeta-Cer(d18:1/26:0)

C79H144N2O31 (1616.9752554)