Exact Mass: 159.0895388
Exact Mass Matches: 159.0895388
Found 227 metabolites which its exact mass value is equals to given mass value 159.0895388
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Betonicine
Betonicine (4-hydroxy-L-prolinebetaine) and its cis isomer, turicine, are naturally occurring substituted pyrrolidines. It is not naturally produced by humans and can only be obtained through consumption of certain plant products. Betonicine was used as an analgesic 1000 years ago and is still available commercially from herbalists today. Betonicine has been isolated from Achillea millefolium L. (common yarrow) and probably from A. atrata L. (black yarrow); it is an alkaloid. Betonicine has been identified as a metabolically inert cell protectant that protects plants against extremes in osmolarity and growth temperatures. Betonicine is found in the fruit juices of yellow orange, blood orange, lemon, mandarin and bitter orange (PMID: 21838291) KEIO_ID B090
5-Acetamidovalerate
5-Acetamidovalerate is involved in the lysine degradation III pathway. It can be generated from the enzymatic reduction of 5-aminopentanoate or enzymatic oxidation of 2-keto-6-acetamidocaproate. Experiment using DL-{4,5-3H}lysine showed 5-acetamidovalerate as the major product. If radiolabeled N6-acetyl-L-lysine was used with added α-ketoglutarate, and pyridoxal phosphate, radiolabeled 2-keto-6-acetamidocaproate was produced. α-Ketoglutarate was preferred over pyruvate, and there was little or no dependence on pyridoxal phosphate. If thiamine pyrophosphate and NAD were added to a similar reaction, virtually all of the label was in 5-acetamidovalerate. If labeled 5-acetamidovalerate was used, labeled 5-aminovalerate (5-aminopentanoate) was identified. In addition, whole cell cultures of R. leguminicola incubated with labeled 5-acetamidovalerate accumulated radiolabeled glutarate. Whole cell cultures incubated with radiolabeled glutarate produced a mixture of tricarboxylic acid cycle acids and other carboxylic acids. 5-Acetamidovalerate is involved in the lysine degradation III pathway. It can be generated from the enzymatic reduction of 5-aminopentanoate or enzymatic oxidation of 2-keto-6-acetamidocaproate.
Calystegin A3
Alkaloid from Solanum tuberosum (potato). Calystegin A3 is found in many foods, some of which are eggplant, alcoholic beverages, potato, and sweet potato. Calystegin A3 is found in alcoholic beverages. Calystegin A3 is an alkaloid from Solanum tuberosum (potato).
Isovalerylglycine
Isovalerylglycine (IVG) is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine < -- > CoA + N-acylglycine. Isovalerylglycine is a byproduct of the catabolism of the aminoacid leucine. Accumulation of isovalerylglycine occurs in Isovaleric Acidemia (IVA). IVA (OMIM/ McKusick 243500) is an autosomal recessive disorder caused by mutations in the isovaleryl-CoA dehydrogenase (EC 1.3.99.10) gene. The deficiency of this enzyme in the metabolism of leucine leads to the accumulation of a series of isovaleryl-CoA metabolites, such as isovalerylglycine. It is very important to caution for false positive results when screening for isovaleric acidemia by tandem mass spectrometry based on dried blood-spot levels of C5-acylcarnitines, including isovalerylcarnitine and its isomer, pivaloylcarnitine; pivaloylcarnitine is derived from pivalate-generating antibiotics, and has caused many false-positive results (PMID: 17850781). Isovalerylglycine is a biomarker for the consumption of cheese. Isovalerylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: N-Isovaleroylglycine is an acyl glycine and could be used as a biomarker for the predispositon for weight gain and obesity.
N-Acetylvaline
N-Acetyl-L-valine or N-Acetylvaline, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylvaline can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylvaline is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-valine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylvaline can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free valine can also occur. Excessive amounts N-acetyl amino acids including N-acetylvaline(as well as N-acetylglycine, N-acetylserine, N-acetylmethionine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylglutamine, N-acetylisoleucine, and N-acetylthreonine) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylthreonine, are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-acetylvaline is a derivative of valine, which is a branched chain essential amino acid. Valine is involved in carbohydrate metabolism. Valine deficiency is marked by neurological defects in the brain. Valine has also been established as a useful supplemental therapy to the ailing liver. [HMDB] Acetylvaline is an endogenous metabolite.
4-Hydroxystachydrine
4-hydroxystachydrine is a biomarker of citrus consumption found in urine.
3-Dehydrocarnitine
3-Dehydrocarnitine is a member of the carnitine family that is an intermediate in carnitine degradation. It can be formed from either D-carnitine or L-carnitine and the enzyme responsible for this oxidation reaction is (S)-carnitine 3-dehydrogenase (EC 1.1.1.254) or Carnitine 3-dehydrogenase (EC 1.1.1.108) respectively. Carnitine is a quaternary ammonium compound biosynthesized from the amino acids lysine and methionine. In living cells, it is required for the transport of fatty acids from the cytosol into the mitochondria during the breakdown of lipids (or fats) for the generation of metabolic energy. [HMDB] 3-Dehydrocarnitine is a member of the carnitine family that is an intermediate in carnitine degradation. It can be formed from either D-carnitine or L-carnitine and the enzyme responsible for this oxidation reaction is (S)-carnitine 3-dehydrogenase (EC 1.1.1.254) or carnitine 3-dehydrogenase (EC 1.1.1.108), respectively. Carnitine is a quaternary ammonium compound biosynthesized from the amino acids lysine and methionine. In living cells, it is required for the transport of fatty acids from the cytosol into the mitochondria during the breakdown of lipids (or fats) for the generation of metabolic energy.
Calystegine A7
Calystegine A7 is an alkaloid from the roots of Lycium chinense (Chinese boxthorn). Alkaloid from the roots of Lycium chinense (Chinese boxthorn)
Calystegine A6
Calystegine A6 is found in coffee and coffee products. Calystegine A6 is an alkaloid from and Lycium chinense (Chinese boxthorn
Medicanine
Medicanine is found in pulses. Medicanine is a amino acid from seeds of Medicago sativa (alfalfa). Amino acid from seeds of Medicago sativa (alfalfa). Medicanine is found in pulses.
2-Methylbutyrylglycine
2-Methylbutyrylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism, such as propionic acidemia. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine < -- > CoA + N-acylglycine. The isolated excretion of high levels of 2-methylbutyrylglycine (2-MBG) is the hallmark of short/branched-chain acyl-CoA dehydrogenase deficiency or SBCADD (PMID:15615815). The disorder is also called 2-methylbutyryl-CoA dehydrogenase deficiency (PMID: 17883863) and has been associated with autism and mental retardation. SBCADD is a recently described autosomal recessive disorder caused by a defect in the degradation pathway of L- isoleucine leading to increased urinary excretion of 2-methylbutyryl glycine. The enzymatic defect results from disruption of the SBCAD gene. Deficiency of SBCAD leads to accumulation of its substrate, 2-methylbutyryl-CoA within the mitochondrion. This substance is transesterified with glycine by the mitochondrial enzyme acyl-CoA glycine-N-acyltransferase (glycine-N-acylase) to form 2-methylbutyryl glycine. Affected patients can be divided into two categories. The first category consists of infants detected by newborn screening programmes. These infants are treated with diet and remain without clinical symptoms. In the second category affected patients are diagnosed because they presented clinically with seizures and psychomotor delay and have increased urinary excretion of 2-methylbutyryl glycine (PMID: 17883863). 2-methylbutyrylglycine has also been found in the urine of patients with propionyl-CoA carboxylase deficiency after consuming isoleucine. (PMID: 630060). 2-methylbutyrylglycine is also elevated in the urine of patients with glutaric aciduria II and ethylmalonic encephalopathy. 2-Methylbutyrylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction:
Valerylglycine
Valerylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction:acyl-CoA + glycine < -- > CoA + N-acylglycineValerylglycine are identified based on their liquid chromatographic-atmospheric pressure chemical ionization mass spectra (LC-APCI-MS)(PMID:8548022). Valerylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction:
Turicine
Turicine is a constituent of Canavalia ensiformis (jack bean)
Methyl 5-(hydroxymethyl)pyrrolidine-3-carboxylate
Methyl 5-(hydroxymethyl)pyrrolidine-3-carboxylate belongs to the class of organic compounds known as pyrrolidine carboxylic acids. These are compounds containing a pyrrolidine ring which bears a carboxylic acid. Pyrrolidine is a five-membered saturated aliphatic heterocycle with one nitrogen atom and four carbon atoms.
(2R,3S)-3-Hydroxy-1,1-dimethylpyrrolidin-1-ium-2-carboxylate
Isovalerylglycine
N-Isovaleroylglycine is an acyl glycine and could be used as a biomarker for the predispositon for weight gain and obesity.
N-Isovalerylglycine
An N-acylglycine in which the acyl group is specified as isovaleryl. N-Isovaleroylglycine is an acyl glycine and could be used as a biomarker for the predispositon for weight gain and obesity.
3-Dehydrocarnitine
An ammonium betaine that is the conjugate base of 3-dehydrocarnitinium; major species at pH 7.3.
(2S)-2-AMINO-3-(TETRAHYDROFURAN-3-YL)PROPANOIC ACID
(2R)-2-AMINO-3-(TETRAHYDROFURAN-3-YL)PROPANOIC ACID
1-(3-METHOXY-4,5-METHYLENEDIOXYPHENYL)-2-NITROETHANE
Spiro[cyclopropane-1,2-[2H]pyrimido[1,2-a]pyrimidine] (9CI)
4-Piperidinecarboxylic acid, 4-hydroxy-1-methyl- (9CI)
4-Piperidinecarboxylic acid,3-hydroxy-,methylester,cis-(9CI)
Methyl 4-aminotetrahydropyran-4-carboxylate hydrochloride
(+)-N-(O-CHLOROBENZYL)-ALPHA-METHYLPHENETHYLAMINEHYDROCHLORIDE
(3R,4R)-4-Aminotetrahydropyran-3-carboxylic acid methyl ester
Methyl 4-Hydroxypiperidine-3-carboxylate
A piperidinecarboxylate ester that is the methyl ester of 4-hydroxypiperidine-3-carboxylic acid.
Methyl 4-hydroxypiperidine-2-carboxylate
A piperidinecarboxylate ester that is the methyl ester of 4-hydroxypiperidine-2-carboxylic acid.
2-Piperidinecarboxylicacid,5-hydroxy-,methylester,(2S,5S)
Methyl 3-hydroxypiperidine-1-carboxylate
A piperidinecarboxylate ester that is the methyl ester of 3-hydroxypiperidine-1-carboxylic acid.
2,2,5,5-Tetramethyl-1,2,5-azadisilolidine
C6H17NSi2 (159.08994819999998)
Methyl 2-(hydroxymethyl)pyrrolidine-1-carboxylate
A carbamate ester that is the methyl ester of 2-(hydroxymethyl)pyrrolidine-1-carboxylic acid.
Methyl 5-hydroxypiperidine-2-carboxylate
A piperidinecarboxylate ester that is the methyl ester of 5-hydroxypiperidine-2-carboxylic acid.
Methyl 3-(hydroxymethyl)pyrrolidine-1-carboxylate
A carbamate ester that is the methyl ester of 3-(hydroxymethyl)pyrrolidine-1-carboxylic acid.
Methyl 5-(hydroxymethyl)pyrrolidine-2-carboxylate
The methyl ester of 5-(hydroxymethyl)pyrrolidine-2-carboxylic acid.
1-Amino-2,3-dihydroxy-5-hydroxymethyl cyclohex-5-ene
betonicine
An amino-acid betaine that is trans-4-hydroxy-L-proline zwitterion in which both of the hydrogens attached to the nitrogen have been replaced by methyl groups.
5-acetamidopentanoic acid
A member of the class of acetamides that is the acetyl derivative of 5-aminopentanoic acid.
Methyl 5-(hydroxymethyl)pyrrolidine-3-carboxylate
The methyl ester of 5-(hydroxymethyl)pyrrolidine-3-carboxylic acid.
N-(2-methylbutanoyl)glycine
A N-acylglycine that is glycine substituted by a 2-methylbutanoyl group at the N atom.
cis-4-hydroxy-D-proline betaine
An amino-acid betaine that is trans-4-hydroxy-D-proline zwitterion in which both of the hydrogens attached to the nitrogen have been replaced by methyl groups.
(1s,2s,5s,7s)-8-azabicyclo[3.2.1]octane-1,2,7-triol
(1r,2s,3s,5r)-8-azabicyclo[3.2.1]octane-1,2,3-triol
2α,3β,23-trihydroxynortropane
{"Ingredient_id": "HBIN005209","Ingredient_name": "2\u03b1,3\u03b2,23-trihydroxynortropane","Alias": "NA","Ingredient_formula": "C7H13NO3","Ingredient_Smile": "C1C2C(CC(N2)C(C1O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "21809","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
2α,3β,4α-trihydroxynortropane
{"Ingredient_id": "HBIN005216","Ingredient_name": "2\u03b1,3\u03b2,4\u03b1-trihydroxynortropane","Alias": "NA","Ingredient_formula": "C7H13NO3","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "21799","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
2α,3β,6-exo-trihydroxynortropane
{"Ingredient_id": "HBIN005218","Ingredient_name": "2\u03b1,3\u03b2,6-exo-trihydroxynortropane","Alias": "NA","Ingredient_formula": "C7H13NO3","Ingredient_Smile": "C1C2C(CC(N2)C(C1O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "21800","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}