N-Acetylvaline (BioDeep_00000018361)
Secondary id: BioDeep_00000606750
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C7H13NO3 (159.0895)
中文名称: N-乙酰-DL-缬氨酸, N-乙酰-L-缬氨酸, N-乙酰基-L-缬氨酸
谱图信息:
最多检出来源 Homo sapiens(feces) 21.09%
Last reviewed on 2024-09-14.
Cite this Page
N-Acetylvaline. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/n-acetylvaline (retrieved
2025-02-03) (BioDeep RN: BioDeep_00000018361). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(=O)NC(C(=O)O)C(C)C
InChI: InChI=1S/C7H13NO3/c1-4(2)6(7(10)11)8-5(3)9/h4,6H,1-3H3,(H,8,9)(H,10,11)
描述信息
N-Acetyl-L-valine or N-Acetylvaline, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylvaline can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylvaline is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-valine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylvaline can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free valine can also occur. Excessive amounts N-acetyl amino acids including N-acetylvaline(as well as N-acetylglycine, N-acetylserine, N-acetylmethionine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylglutamine, N-acetylisoleucine, and N-acetylthreonine) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylthreonine, are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557).
N-acetylvaline is a derivative of valine, which is a branched chain essential amino acid. Valine is involved in carbohydrate metabolism. Valine deficiency is marked by neurological defects in the brain. Valine has also been established as a useful supplemental therapy to the ailing liver. [HMDB]
Acetylvaline is an endogenous metabolite.
同义名列表
14 个代谢物同义名
(2S)-2-Acetamido-3-methylbutanoic acid; (S)-2-Acetamido-3-methylbutanoic acid; (2S)-2-Acetamido-3-methylbutanoate; 2-Acetamido-3-methylbutanoic acid; N-Acetylvaline, (D)-isomer; N-Acetylvaline, (L)-isomer; L-valine, N-acetyl-; N-Acetyl-D,L-valine; N-Acetyl-DL-valine; N-Acetyl-L-valine; L-N-Acetylvaline; N-Acetylvaline; Acetylvaline; Acetyl-val
数据库引用编号
11 个数据库交叉引用编号
- ChEBI: CHEBI:169985
- ChEBI: CHEBI:21565
- PubChem: 227752
- PubChem: 66789
- HMDB: HMDB0011757
- foodb: FDB028427
- chemspider: 60154
- CAS: 96-81-1
- PMhub: MS000007232
- RefMet: N-Acetylvaline
- medchemexpress: HY-W015466
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- S Jayanthi, N Sinha, K V Ramanathan. 2₄-SEMA as a sensitive and offset compensated SLF sequence.
Journal of magnetic resonance (San Diego, Calif. : 1997).
2010 Dec; 207(2):206-12. doi:
10.1016/j.jmr.2010.08.019
. [PMID: 20880731] - Riqiang Fu, Milton Truong, Randy J Saager, Myriam Cotten, Timothy A Cross. High-resolution heteronuclear correlation spectroscopy in solid state NMR of aligned samples.
Journal of magnetic resonance (San Diego, Calif. : 1997).
2007 Sep; 188(1):41-8. doi:
10.1016/j.jmr.2007.06.004
. [PMID: 17606394]