Exact Mass: 1186.577089

Exact Mass Matches: 1186.577089

Found 30 metabolites which its exact mass value is equals to given mass value 1186.577089, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

CDP-DG(20:3(5Z,8Z,11Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-({[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C55H88N4O18P2S (1186.5289288)


CDP-DG(20:3(5Z,8Z,11Z)/LTE4) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:3(5Z,8Z,11Z)/LTE4), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(LTE4/20:3(5Z,8Z,11Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-({[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C55H88N4O18P2S (1186.5289288)


CDP-DG(LTE4/20:3(5Z,8Z,11Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(LTE4/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(20:3(8Z,11Z,14Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-({[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C55H88N4O18P2S (1186.5289288)


CDP-DG(20:3(8Z,11Z,14Z)/LTE4) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:3(8Z,11Z,14Z)/LTE4), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(LTE4/20:3(8Z,11Z,14Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-({[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C55H88N4O18P2S (1186.5289288)


CDP-DG(LTE4/20:3(8Z,11Z,14Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(LTE4/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   
   

3-O-alpha-L-rhamnopyranosyl-(1->4)-beta-D-galactopyranosyl-(1->3) -[beta-D-glucopyranosyl-(1->2)]-beta-D-glucuronopyranosyl 22-O-angeloylerythrodiol

3-O-alpha-L-rhamnopyranosyl-(1->4)-beta-D-galactopyranosyl-(1->3) -[beta-D-glucopyranosyl-(1->2)]-beta-D-glucuronopyranosyl 22-O-angeloylerythrodiol

C59H94O24 (1186.6134723999999)


   

3-O-alpha-L-rhamnopyranosyl (1?3)-beta-D-glucuronopyranosyloleanolic acid 28-O-(4,6-di-O-acetyl-beta-D-glucopyranosyl)(1?2)-beta-D-glucopyranosyl ester|scheffleside B

3-O-alpha-L-rhamnopyranosyl (1?3)-beta-D-glucuronopyranosyloleanolic acid 28-O-(4,6-di-O-acetyl-beta-D-glucopyranosyl)(1?2)-beta-D-glucopyranosyl ester|scheffleside B

C58H90O25 (1186.577089)


   
   
   
   
   
   
   
   

n-[(2s,3s,4r,6r)-6-{[(3s,6s,13r,16r,17r,18r,20r,21s,22r)-23-hydroxy-17-{[(2s,4r,5s,6s)-5-hydroxy-4-{[(2r,4r,5r,6s)-4-hydroxy-5-{[(2r,4r,5r,6s)-4-hydroxy-5-methoxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-(hydroxymethyl)-3,8,12,18,20,22-hexamethyl-25,27-dioxo-26-oxapentacyclo[22.2.1.0¹,⁶.0¹³,²².0¹⁶,²¹]heptacosa-4,7,11,14,23-pentaen-9-yl]oxy}-2,4-dimethyl-4-nitrooxan-3-yl]methoxycarboximidic acid

n-[(2s,3s,4r,6r)-6-{[(3s,6s,13r,16r,17r,18r,20r,21s,22r)-23-hydroxy-17-{[(2s,4r,5s,6s)-5-hydroxy-4-{[(2r,4r,5r,6s)-4-hydroxy-5-{[(2r,4r,5r,6s)-4-hydroxy-5-methoxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-(hydroxymethyl)-3,8,12,18,20,22-hexamethyl-25,27-dioxo-26-oxapentacyclo[22.2.1.0¹,⁶.0¹³,²².0¹⁶,²¹]heptacosa-4,7,11,14,23-pentaen-9-yl]oxy}-2,4-dimethyl-4-nitrooxan-3-yl]methoxycarboximidic acid

C61H90N2O21 (1186.603577)


   

(3s,4r)-2-{[(2s,4s,5r)-2-{[(3r,4r,6r)-6-{[(5as,9as,11as)-1-[(2s,3r,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-2-{[(2s)-3,4,5-trihydroxyoxan-2-yl]oxy}-tetradecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(3s,4r)-2-{[(2s,4s,5r)-2-{[(3r,4r,6r)-6-{[(5as,9as,11as)-1-[(2s,3r,6s)-3,7-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-2-{[(2s)-3,4,5-trihydroxyoxan-2-yl]oxy}-tetradecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C55H94O27 (1186.5982174)


   

7,8,18,28,29,35,55,56,57,58-decahydroxy-30,54-bis(hydroxymethyl)-13,18,37,41,48,48,53,54-octamethyl-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione

7,8,18,28,29,35,55,56,57,58-decahydroxy-30,54-bis(hydroxymethyl)-13,18,37,41,48,48,53,54-octamethyl-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione

C58H90O25 (1186.577089)


   

(2r,3r,4s,6r)-6-[(3s,4ar,6as,6br,8s,8as,9r,12as,14ar,14bs)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]-4-{[(2r,3r,4s,5s,6s)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3-hydroxy-5-{[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

(2r,3r,4s,6r)-6-[(3s,4ar,6as,6br,8s,8as,9r,12as,14ar,14bs)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]-4-{[(2r,3r,4s,5s,6s)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3-hydroxy-5-{[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C59H94O24 (1186.6134723999999)


   

(2s,5s,6s,9s,12r,13r,16s,18r)-16-{[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5s,6r)-5-{[(2s,3r,4s,5r)-4-{[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-methoxyoxan-2-yl]oxy}-3,5-dihydroxyoxan-2-yl]oxy}-4-hydroxy-6-methyl-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-2,6,13,17,17-pentamethyl-6-(4-methylpent-4-en-1-yl)-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-1(20)-ene-4,8-dione

(2s,5s,6s,9s,12r,13r,16s,18r)-16-{[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5s,6r)-5-{[(2s,3r,4s,5r)-4-{[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-methoxyoxan-2-yl]oxy}-3,5-dihydroxyoxan-2-yl]oxy}-4-hydroxy-6-methyl-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-2,6,13,17,17-pentamethyl-6-(4-methylpent-4-en-1-yl)-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-1(20)-ene-4,8-dione

C58H90O25 (1186.577089)


   

(7e,19e,21e,33e,45e,47e)-9,11,23,25,35,37,49,51-octahydroxy-4,16,30,42-tetrakis(hydroxymethyl)-3,6,15,18,22,29,32,41,48-nonamethyl-12,26,38,52-tetraoxanonacyclo[48.2.1.1¹⁰,¹³.1²⁴,²⁷.1³⁶,³⁹.0¹,⁶.0¹³,¹⁸.0²⁷,³².0³⁹,⁴⁴]hexapentaconta-4,7,16,19,21,30,33,42,45,47-decaene-53,54,55,56-tetrone

(7e,19e,21e,33e,45e,47e)-9,11,23,25,35,37,49,51-octahydroxy-4,16,30,42-tetrakis(hydroxymethyl)-3,6,15,18,22,29,32,41,48-nonamethyl-12,26,38,52-tetraoxanonacyclo[48.2.1.1¹⁰,¹³.1²⁴,²⁷.1³⁶,³⁹.0¹,⁶.0¹³,¹⁸.0²⁷,³².0³⁹,⁴⁴]hexapentaconta-4,7,16,19,21,30,33,42,45,47-decaene-53,54,55,56-tetrone

C65H86O20 (1186.5712156)


   

9,11,23,25,35,37,49,51-octahydroxy-4,16,30,42-tetrakis(hydroxymethyl)-3,6,15,18,22,29,32,41,48-nonamethyl-12,26,38,52-tetraoxanonacyclo[48.2.1.1¹⁰,¹³.1²⁴,²⁷.1³⁶,³⁹.0¹,⁶.0¹³,¹⁸.0²⁷,³².0³⁹,⁴⁴]hexapentaconta-4,7,16,19,21,30,33,42,45,47-decaene-53,54,55,56-tetrone

9,11,23,25,35,37,49,51-octahydroxy-4,16,30,42-tetrakis(hydroxymethyl)-3,6,15,18,22,29,32,41,48-nonamethyl-12,26,38,52-tetraoxanonacyclo[48.2.1.1¹⁰,¹³.1²⁴,²⁷.1³⁶,³⁹.0¹,⁶.0¹³,¹⁸.0²⁷,³².0³⁹,⁴⁴]hexapentaconta-4,7,16,19,21,30,33,42,45,47-decaene-53,54,55,56-tetrone

C65H86O20 (1186.5712156)


   

16-{[3-({5-[(4-{[3,5-dihydroxy-6-(hydroxymethyl)-4-methoxyoxan-2-yl]oxy}-3,5-dihydroxyoxan-2-yl)oxy]-4-hydroxy-6-methyl-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-2,6,13,17,17-pentamethyl-6-(4-methylpent-4-en-1-yl)-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-1(20)-ene-4,8-dione

16-{[3-({5-[(4-{[3,5-dihydroxy-6-(hydroxymethyl)-4-methoxyoxan-2-yl]oxy}-3,5-dihydroxyoxan-2-yl)oxy]-4-hydroxy-6-methyl-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-2,6,13,17,17-pentamethyl-6-(4-methylpent-4-en-1-yl)-7-oxapentacyclo[10.8.0.0²,⁹.0⁵,⁹.0¹³,¹⁸]icos-1(20)-ene-4,8-dione

C58H90O25 (1186.577089)


   

n-[(2r,3r,4s,6r)-6-{[(1s,3r,6s,7z,9s,11z,13s,16s,17s,18s,20s,21r,22s)-23-hydroxy-17-{[(2r,4r,5s,6s)-5-hydroxy-4-{[(2s,4r,5r,6s)-4-hydroxy-5-{[(2r,4r,5r,6s)-4-hydroxy-5-methoxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-(hydroxymethyl)-3,8,12,18,20,22-hexamethyl-25,27-dioxo-26-oxapentacyclo[22.2.1.0¹,⁶.0¹³,²².0¹⁶,²¹]heptacosa-4,7,11,14,23-pentaen-9-yl]oxy}-2,4-dimethyl-4-nitrooxan-3-yl]methoxycarboximidic acid

n-[(2r,3r,4s,6r)-6-{[(1s,3r,6s,7z,9s,11z,13s,16s,17s,18s,20s,21r,22s)-23-hydroxy-17-{[(2r,4r,5s,6s)-5-hydroxy-4-{[(2s,4r,5r,6s)-4-hydroxy-5-{[(2r,4r,5r,6s)-4-hydroxy-5-methoxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-(hydroxymethyl)-3,8,12,18,20,22-hexamethyl-25,27-dioxo-26-oxapentacyclo[22.2.1.0¹,⁶.0¹³,²².0¹⁶,²¹]heptacosa-4,7,11,14,23-pentaen-9-yl]oxy}-2,4-dimethyl-4-nitrooxan-3-yl]methoxycarboximidic acid

C61H90N2O21 (1186.603577)


   

(1s,4s,7s,8s,9r,11s,13s,14r,18r,22s,25s,27r,28s,29s,30r,32r,34r,35s,37r,38r,41r,42r,46s,53s,54r,55r,56r,57s,58r)-7,8,18,28,29,35,55,56,57,58-decahydroxy-30,54-bis(hydroxymethyl)-13,18,37,41,48,48,53,54-octamethyl-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione

(1s,4s,7s,8s,9r,11s,13s,14r,18r,22s,25s,27r,28s,29s,30r,32r,34r,35s,37r,38r,41r,42r,46s,53s,54r,55r,56r,57s,58r)-7,8,18,28,29,35,55,56,57,58-decahydroxy-30,54-bis(hydroxymethyl)-13,18,37,41,48,48,53,54-octamethyl-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione

C58H90O25 (1186.577089)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3s,4s,5r,6r)-3,5-dihydroxy-6-methyl-4-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-4-{[(1r,2r,3s,4r,5r)-2,3,4-trihydroxy-5-(hydroxymethyl)cyclohexyl]oxy}oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3s,4s,5r,6r)-3,5-dihydroxy-6-methyl-4-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-4-{[(1r,2r,3s,4r,5r)-2,3,4-trihydroxy-5-(hydroxymethyl)cyclohexyl]oxy}oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C59H94O24 (1186.6134723999999)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-5-hydroxy-4-{[2,3,4-trihydroxy-5-(hydroxymethyl)cyclohexyl]oxy}oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-5-hydroxy-4-{[2,3,4-trihydroxy-5-(hydroxymethyl)cyclohexyl]oxy}oxan-2-yl]oxy}-6a,6b,9,9,12a-pentamethyl-2-methylidene-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C59H94O24 (1186.6134723999999)