Exact Mass: 1159.5734014

Exact Mass Matches: 1159.5734014

Found 14 metabolites which its exact mass value is equals to given mass value 1159.5734014, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

CDP-DG(22:3(10Z,13Z,16Z)/6 keto-PGF1alpha)

[(1R,9R,18S,19S,21R,22S,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,21,23,24-hexahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11,16-tetraoxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacosan-9-yl]methyl (10Z,13Z,16Z)-tricosa-10,13,16-trienoate

C55H91N3O19P2 (1159.5721716)


CDP-DG(22:3(10Z,13Z,16Z)/6 keto-PGF1alpha) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:3(10Z,13Z,16Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(6 keto-PGF1alpha/22:3(10Z,13Z,16Z))

(1R,9R,19S,20S,22R,23S,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,22,24,25-hexahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12,17-tetraoxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacosan-9-yl (10Z,13Z,16Z)-tricosa-10,13,16-trienoate

C55H91N3O19P2 (1159.5721716)


CDP-DG(6 keto-PGF1alpha/22:3(10Z,13Z,16Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(6 keto-PGF1alpha/22:3(10Z,13Z,16Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(22:3(10Z,13Z,16Z)/TXB2)

[(1R,9R,15Z,18S,19S,23R,24R,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,21,24,25-hexahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11-trioxo-3,5,7,10,22,26-hexaoxa-4lambda5,6lambda5-diphosphabicyclo[16.7.2]heptacos-15-en-9-yl]methyl (10Z,13Z,16Z)-tricosa-10,13,16-trienoate

C55H91N3O19P2 (1159.5721716)


CDP-DG(22:3(10Z,13Z,16Z)/TXB2) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:3(10Z,13Z,16Z)/TXB2), in particular, consists of one chain of one 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(TXB2/22:3(10Z,13Z,16Z))

(1R,9R,16Z,19S,20S,24R,25R,26S,28R)-28-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,22,25,26-hexahydroxy-24-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12-trioxo-3,5,7,11,23,27-hexaoxa-4lambda5,6lambda5-diphosphabicyclo[17.7.2]octacos-16-en-9-yl (10Z,13Z,16Z)-tricosa-10,13,16-trienoate

C55H91N3O19P2 (1159.5721716)


CDP-DG(TXB2/22:3(10Z,13Z,16Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(TXB2/22:3(10Z,13Z,16Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   
   

CDP-DG(22:3(10Z,13Z,16Z)/TXB2)

CDP-DG(22:3(10Z,13Z,16Z)/TXB2)

C55H91N3O19P2 (1159.5721716)


   

CDP-DG(6 keto-PGF1alpha/22:3(10Z,13Z,16Z))

CDP-DG(6 keto-PGF1alpha/22:3(10Z,13Z,16Z))

C55H91N3O19P2 (1159.5721716)


   

CDP-DG(TXB2/22:3(10Z,13Z,16Z))

CDP-DG(TXB2/22:3(10Z,13Z,16Z))

C55H91N3O19P2 (1159.5721716)


   

CDP-DG(22:3(10Z,13Z,16Z)/6 keto-PGF1alpha)

CDP-DG(22:3(10Z,13Z,16Z)/6 keto-PGF1alpha)

C55H91N3O19P2 (1159.5721716)


   

(2S,3R,4E)-2-acetamido-3-hydroxyoctadec-4-en-1-yl 2-acetamido-2-deoxy-beta-D-galactopyranosyl-(1->4)-[5-acetamido-3,5-dideoxy-D-glycero-alpha-D-galacto-non-2-ulopyranonosyl-(2->3)]-beta-D-galactopyranosyl-(1->4)-beta-D-glucopyranoside

(2S,3R,4E)-2-acetamido-3-hydroxyoctadec-4-en-1-yl 2-acetamido-2-deoxy-beta-D-galactopyranosyl-(1->4)-[5-acetamido-3,5-dideoxy-D-glycero-alpha-D-galacto-non-2-ulopyranonosyl-(2->3)]-beta-D-galactopyranosyl-(1->4)-beta-D-glucopyranoside

C51H89N3O26 (1159.5734014)


   

(2s,5s,6s)-2-[(s)-{[(2s,3r,4s,5r)-5-(aminomethyl)-3,4-dihydroxyoxolan-2-yl]oxy}[(2s,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl]-1,4-dimethyl-6-{[(3s)-15-methyl-3-{[(3s)-3-methyl-5-oxo-5-{[(2s,3r,4r,5s,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}pentanoyl]oxy}hexadecanoyl]oxy}-3-oxo-1,4-diazepane-5-carboxylic acid

(2s,5s,6s)-2-[(s)-{[(2s,3r,4s,5r)-5-(aminomethyl)-3,4-dihydroxyoxolan-2-yl]oxy}[(2s,3s,4r,5r)-3,4-dihydroxy-5-(4-hydroxy-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl]-1,4-dimethyl-6-{[(3s)-15-methyl-3-{[(3s)-3-methyl-5-oxo-5-{[(2s,3r,4r,5s,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}pentanoyl]oxy}hexadecanoyl]oxy}-3-oxo-1,4-diazepane-5-carboxylic acid

C54H89N5O22 (1159.5998894)


   

6-amino-2-({2-[({5-[(3-carbamoyl-1-hydroxypropylidene)amino]-8-hydroxy-9-oxo-1h,2h,3h,4h-pyrimido[1,2-a]quinolin-1-yl}(hydroxy)methylidene)amino]-1,3-dihydroxypropylidene}amino)-n-({[4-(n-hydroxyformamido)-1-({2,5,8-trihydroxy-6-[3-(n-hydroxyformamido)propyl]-3-(hydroxymethyl)-1,4,7-triazacyclotrideca-1,4,7-trien-9-yl}-c-hydroxycarbonimidoyl)butyl]-c-hydroxycarbonimidoyl}methyl)hexanimidic acid

6-amino-2-({2-[({5-[(3-carbamoyl-1-hydroxypropylidene)amino]-8-hydroxy-9-oxo-1h,2h,3h,4h-pyrimido[1,2-a]quinolin-1-yl}(hydroxy)methylidene)amino]-1,3-dihydroxypropylidene}amino)-n-({[4-(n-hydroxyformamido)-1-({2,5,8-trihydroxy-6-[3-(n-hydroxyformamido)propyl]-3-(hydroxymethyl)-1,4,7-triazacyclotrideca-1,4,7-trien-9-yl}-c-hydroxycarbonimidoyl)butyl]-c-hydroxycarbonimidoyl}methyl)hexanimidic acid

C49H73N15O18 (1159.5257758)


   

[(3s,6s,12s,15s,21s,24r,27s)-12-(carboxymethyl)-5,8,11,14,17,20,23,26-octahydroxy-24-[2-(c-hydroxycarbonimidoyl)ethyl]-15-(c-hydroxycarbonimidoylmethyl)-6-[(4-hydroxyphenyl)methyl]-27-[(1-hydroxytetradecylidene)amino]-3-isopropyl-28-methyl-2-oxo-1-oxa-4,7,10,13,16,19,22,25-octaazacyclooctacosa-4,7,10,13,16,19,22,25-octaen-21-yl]acetic acid

[(3s,6s,12s,15s,21s,24r,27s)-12-(carboxymethyl)-5,8,11,14,17,20,23,26-octahydroxy-24-[2-(c-hydroxycarbonimidoyl)ethyl]-15-(c-hydroxycarbonimidoylmethyl)-6-[(4-hydroxyphenyl)methyl]-27-[(1-hydroxytetradecylidene)amino]-3-isopropyl-28-methyl-2-oxo-1-oxa-4,7,10,13,16,19,22,25-octaazacyclooctacosa-4,7,10,13,16,19,22,25-octaen-21-yl]acetic acid

C53H81N11O18 (1159.5760766)


   

[12-(carboxymethyl)-5,8,11,14,17,20,23,26-octahydroxy-24-[2-(c-hydroxycarbonimidoyl)ethyl]-15-(c-hydroxycarbonimidoylmethyl)-6-[(4-hydroxyphenyl)methyl]-27-[(1-hydroxytetradecylidene)amino]-3-isopropyl-28-methyl-2-oxo-1-oxa-4,7,10,13,16,19,22,25-octaazacyclooctacosa-4,7,10,13,16,19,22,25-octaen-21-yl]acetic acid

[12-(carboxymethyl)-5,8,11,14,17,20,23,26-octahydroxy-24-[2-(c-hydroxycarbonimidoyl)ethyl]-15-(c-hydroxycarbonimidoylmethyl)-6-[(4-hydroxyphenyl)methyl]-27-[(1-hydroxytetradecylidene)amino]-3-isopropyl-28-methyl-2-oxo-1-oxa-4,7,10,13,16,19,22,25-octaazacyclooctacosa-4,7,10,13,16,19,22,25-octaen-21-yl]acetic acid

C53H81N11O18 (1159.5760766)