Exact Mass: 1149.6083276

Exact Mass Matches: 1149.6083276

Found 21 metabolites which its exact mass value is equals to given mass value 1149.6083276, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

   

CDP-DG(22:3(10Z,13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C57H89N3O17P2 (1149.5666924)


CDP-DG(22:3(10Z,13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:3(10Z,13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:3(10Z,13Z,16Z))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C57H89N3O17P2 (1149.5666924)


CDP-DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:3(10Z,13Z,16Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(22:3(10Z,13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C57H89N3O17P2 (1149.5666924)


CDP-DG(22:3(10Z,13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:3(10Z,13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:3(10Z,13Z,16Z))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C57H89N3O17P2 (1149.5666924)


CDP-DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:3(10Z,13Z,16Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(a-25:0/5-iso PGF2VI)

[(1R,9R,13Z,16R,17S,19R,20S,21S,22S,24R)-24-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,17,19,21,22-hexahydroxy-20-[(1E,3R)-3-hydroxyoct-1-en-1-yl]-4,6,11-trioxo-3,5,7,10,23-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[14.6.2]tetracos-13-en-9-yl]methyl 22-methyltetracosanoate

C55H97N3O18P2 (1149.6242042)


CDP-DG(a-25:0/5-iso PGF2VI) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(a-25:0/5-iso PGF2VI), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(5-iso PGF2VI/a-25:0)

(1R,9R,14Z,17R,18S,20R,21S,22S,23S,25R)-25-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,18,20,22,23-hexahydroxy-21-[(1E,3R)-3-hydroxyoct-1-en-1-yl]-4,6,12-trioxo-3,5,7,11,24-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[15.6.2]pentacos-14-en-9-yl 22-methyltetracosanoate

C55H97N3O18P2 (1149.6242042)


CDP-DG(5-iso PGF2VI/a-25:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(5-iso PGF2VI/a-25:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

(3beta,9alpha,12beta,14beta,17alpha,20S)-12-(acetyloxy)-3-{[6-deoxy-3-O-methyl-beta-D-allopyranosyl-(1 ->4)-2,6-dideoxy-3-O-methyl-beta-D-arabino-hexopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-beta-D-ribo-hexopyranpsyl]oxy}-8,14,17-trihydroxypregn-5-en-20-yl 2-(methylamino)benzoate|tinctoroside B

(3beta,9alpha,12beta,14beta,17alpha,20S)-12-(acetyloxy)-3-{[6-deoxy-3-O-methyl-beta-D-allopyranosyl-(1 ->4)-2,6-dideoxy-3-O-methyl-beta-D-arabino-hexopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-beta-D-ribo-hexopyranpsyl]oxy}-8,14,17-trihydroxypregn-5-en-20-yl 2-(methylamino)benzoate|tinctoroside B

C59H91NO21 (1149.6083276)


   
   
   

CDP-DG(22:3(10Z,13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

CDP-DG(22:3(10Z,13Z,16Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C57H89N3O17P2 (1149.5666924)


   

CDP-DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:3(10Z,13Z,16Z))

CDP-DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/22:3(10Z,13Z,16Z))

C57H89N3O17P2 (1149.5666924)


   

CDP-DG(22:3(10Z,13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

CDP-DG(22:3(10Z,13Z,16Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C57H89N3O17P2 (1149.5666924)


   

CDP-DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:3(10Z,13Z,16Z))

CDP-DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/22:3(10Z,13Z,16Z))

C57H89N3O17P2 (1149.5666924)


   
   
   

(1s)-1-[(1r,3ar,3bs,7s,9ar,9br,11r,11ar)-11-(acetyloxy)-7-{[(2r,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4r,5r,6r)-5-{[(2s,3r,4s,5r,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-1,3a,3b-trihydroxy-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl 2-(methylamino)benzoate

(1s)-1-[(1r,3ar,3bs,7s,9ar,9br,11r,11ar)-11-(acetyloxy)-7-{[(2r,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4r,5r,6r)-5-{[(2s,3r,4s,5r,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-1,3a,3b-trihydroxy-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl 2-(methylamino)benzoate

C59H91NO21 (1149.6083276)


   

n-[9-benzyl-18-(3-chlorobutan-2-yl)-5,8,11,14,17,20,26,28-octahydroxy-15-(c-hydroxycarbonimidoylmethyl)-12-(1-hydroxyethyl)-22,24,30-trimethyl-21-(2-methylpropyl)-2,23-dioxo-3-propyl-1-oxa-4,7,10,13,16,19,22,25-octaazacyclotriaconta-4,7,10,13,16,19,25-heptaen-29-yl]-2-[(hydroxymethylidene)amino]-4-methylpentanimidic acid

n-[9-benzyl-18-(3-chlorobutan-2-yl)-5,8,11,14,17,20,26,28-octahydroxy-15-(c-hydroxycarbonimidoylmethyl)-12-(1-hydroxyethyl)-22,24,30-trimethyl-21-(2-methylpropyl)-2,23-dioxo-3-propyl-1-oxa-4,7,10,13,16,19,22,25-octaazacyclotriaconta-4,7,10,13,16,19,25-heptaen-29-yl]-2-[(hydroxymethylidene)amino]-4-methylpentanimidic acid

C53H84ClN11O15 (1149.5836584)


   

(2s)-n-[(2s,5s,8s,11r,12s,15s)-5-benzyl-8-[(2s)-butan-2-yl]-6,13,16,21-tetrahydroxy-15-[(4-hydroxycyclohex-2-en-1-yl)methyl]-2-[(1r)-1-hydroxyethyl]-4,11-dimethyl-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-2-{[(2s,3r)-2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1,3-dihydroxybutylidene]amino}pentanediimidic acid

(2s)-n-[(2s,5s,8s,11r,12s,15s)-5-benzyl-8-[(2s)-butan-2-yl]-6,13,16,21-tetrahydroxy-15-[(4-hydroxycyclohex-2-en-1-yl)methyl]-2-[(1r)-1-hydroxyethyl]-4,11-dimethyl-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl]-2-{[(2s,3r)-2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1,3-dihydroxybutylidene]amino}pentanediimidic acid

C56H79N9O17 (1149.5593644)


   

n-{5-benzyl-6,13,16,21-tetrahydroxy-15-[(4-hydroxycyclohex-2-en-1-yl)methyl]-2-(1-hydroxyethyl)-4,11-dimethyl-3,9,22-trioxo-8-(sec-butyl)-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}-2-[(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1,3-dihydroxybutylidene)amino]pentanediimidic acid

n-{5-benzyl-6,13,16,21-tetrahydroxy-15-[(4-hydroxycyclohex-2-en-1-yl)methyl]-2-(1-hydroxyethyl)-4,11-dimethyl-3,9,22-trioxo-8-(sec-butyl)-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl}-2-[(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1,3-dihydroxybutylidene)amino]pentanediimidic acid

C56H79N9O17 (1149.5593644)


   

(2r)-n-[(3r,9s,12r,15s,18s,21r,24r,28r,29r,30s)-9-benzyl-18-[(2s,3r)-3-chlorobutan-2-yl]-5,8,11,14,17,20,26,28-octahydroxy-15-(c-hydroxycarbonimidoylmethyl)-12-[(1r)-1-hydroxyethyl]-22,24,30-trimethyl-21-(2-methylpropyl)-2,23-dioxo-3-propyl-1-oxa-4,7,10,13,16,19,22,25-octaazacyclotriaconta-4,7,10,13,16,19,25-heptaen-29-yl]-2-[(hydroxymethylidene)amino]-4-methylpentanimidic acid

(2r)-n-[(3r,9s,12r,15s,18s,21r,24r,28r,29r,30s)-9-benzyl-18-[(2s,3r)-3-chlorobutan-2-yl]-5,8,11,14,17,20,26,28-octahydroxy-15-(c-hydroxycarbonimidoylmethyl)-12-[(1r)-1-hydroxyethyl]-22,24,30-trimethyl-21-(2-methylpropyl)-2,23-dioxo-3-propyl-1-oxa-4,7,10,13,16,19,22,25-octaazacyclotriaconta-4,7,10,13,16,19,25-heptaen-29-yl]-2-[(hydroxymethylidene)amino]-4-methylpentanimidic acid

C53H84ClN11O15 (1149.5836584)