Exact Mass: 1141.5103

Exact Mass Matches: 1141.5103

Found 21 metabolites which its exact mass value is equals to given mass value 1141.5103, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/6 keto-PGF1alpha)

[(1R,9R,18S,19S,21R,22S,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,21,23,24-hexahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11,16-tetraoxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacosan-9-yl]methyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C54H85N3O19P2 (1141.5252)


CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/6 keto-PGF1alpha) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(6 keto-PGF1alpha/22:5(4Z,7Z,10Z,13Z,16Z))

(1R,9R,19S,20S,22R,23S,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,22,24,25-hexahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12,17-tetraoxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacosan-9-yl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C54H85N3O19P2 (1141.5252)


CDP-DG(6 keto-PGF1alpha/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(6 keto-PGF1alpha/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/TXB2)

[(1R,9R,15Z,18S,19S,23R,24R,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,21,24,25-hexahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11-trioxo-3,5,7,10,22,26-hexaoxa-4lambda5,6lambda5-diphosphabicyclo[16.7.2]heptacos-15-en-9-yl]methyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C54H85N3O19P2 (1141.5252)


CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/TXB2) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/TXB2), in particular, consists of one chain of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(TXB2/22:5(4Z,7Z,10Z,13Z,16Z))

(1R,9R,16Z,19S,20S,24R,25R,26S,28R)-28-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,22,25,26-hexahydroxy-24-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12-trioxo-3,5,7,11,23,27-hexaoxa-4lambda5,6lambda5-diphosphabicyclo[17.7.2]octacos-16-en-9-yl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C54H85N3O19P2 (1141.5252)


CDP-DG(TXB2/22:5(4Z,7Z,10Z,13Z,16Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(TXB2/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/6 keto-PGF1alpha)

[(1R,9R,18S,19S,21R,22S,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,21,23,24-hexahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11,16-tetraoxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacosan-9-yl]methyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C54H85N3O19P2 (1141.5252)


CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/6 keto-PGF1alpha) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(6 keto-PGF1alpha/22:5(7Z,10Z,13Z,16Z,19Z))

(1R,9R,19S,20S,22R,23S,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,22,24,25-hexahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12,17-tetraoxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacosan-9-yl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C54H85N3O19P2 (1141.5252)


CDP-DG(6 keto-PGF1alpha/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(6 keto-PGF1alpha/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/TXB2)

[(1R,9R,15Z,18S,19S,23R,24R,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,21,24,25-hexahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11-trioxo-3,5,7,10,22,26-hexaoxa-4lambda5,6lambda5-diphosphabicyclo[16.7.2]heptacos-15-en-9-yl]methyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C54H85N3O19P2 (1141.5252)


CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/TXB2) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/TXB2), in particular, consists of one chain of one 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(TXB2/22:5(7Z,10Z,13Z,16Z,19Z))

(1R,9R,16Z,19S,20S,24R,25R,26S,28R)-28-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,22,25,26-hexahydroxy-24-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12-trioxo-3,5,7,11,23,27-hexaoxa-4lambda5,6lambda5-diphosphabicyclo[17.7.2]octacos-16-en-9-yl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C54H85N3O19P2 (1141.5252)


CDP-DG(TXB2/22:5(7Z,10Z,13Z,16Z,19Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(TXB2/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 7Z,10Z,13Z,16Z,19Z-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

(13Z,16Z)-Hexacosa-13,16-dienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-(2-{[2-(hexacosa-13,16-dienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-2-hydroxy-3,3-dimethylbutanimidic acid

C47H82N7O17P3S (1141.4701)


(13z,16z)-hexacosa-13,16-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (13Z_16Z)-hexacosa-13_16-dienoic acid thioester of coenzyme A. (13z,16z)-hexacosa-13,16-dienoyl-coa is an acyl-CoA with 26 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (13z,16z)-hexacosa-13,16-dienoyl-coa is therefore classified as a very long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (13z,16z)-hexacosa-13,16-dienoyl-coa, being a very long chain acyl-CoA is a substrate for very long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (13Z,16Z)-Hexacosa-13,16-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (13Z,16Z)-Hexacosa-13,16-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (13Z,16Z)-Hexacosa-13,16-dienoyl-CoA into (13Z_16Z)-Hexacosa-13_16-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (13Z_16Z)-Hexacosa-13_16-dienoylcarnitine is converted back to (13Z,16Z)-Hexacosa-13,16-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (13Z,16Z)-Hexacosa-13,16-dienoyl-CoA occurs in four steps. First, since (13Z,16Z)-Hexacosa-13,16-dienoyl-CoA is a very long chain acyl-CoA it is the substrate for a very long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (13Z,16Z)-Hexacosa-13,16-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD...

   

NADPH (tetracyclohexanamine)

NADPH (tetracyclohexanamine)

C45H82N11O17P3 (1141.5103)


   
   

CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/TXB2)

CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/TXB2)

C54H85N3O19P2 (1141.5252)


   

CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/TXB2)

CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/TXB2)

C54H85N3O19P2 (1141.5252)


   

CDP-DG(6 keto-PGF1alpha/22:5(4Z,7Z,10Z,13Z,16Z))

CDP-DG(6 keto-PGF1alpha/22:5(4Z,7Z,10Z,13Z,16Z))

C54H85N3O19P2 (1141.5252)


   

CDP-DG(6 keto-PGF1alpha/22:5(7Z,10Z,13Z,16Z,19Z))

CDP-DG(6 keto-PGF1alpha/22:5(7Z,10Z,13Z,16Z,19Z))

C54H85N3O19P2 (1141.5252)


   

(13Z,16Z)-Hexacosa-13,16-dienoyl-CoA

(13Z,16Z)-Hexacosa-13,16-dienoyl-CoA

C47H82N7O17P3S (1141.4701)


   

CDP-DG(TXB2/22:5(4Z,7Z,10Z,13Z,16Z))

CDP-DG(TXB2/22:5(4Z,7Z,10Z,13Z,16Z))

C54H85N3O19P2 (1141.5252)


   

CDP-DG(TXB2/22:5(7Z,10Z,13Z,16Z,19Z))

CDP-DG(TXB2/22:5(7Z,10Z,13Z,16Z,19Z))

C54H85N3O19P2 (1141.5252)


   

CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/6 keto-PGF1alpha)

CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/6 keto-PGF1alpha)

C54H85N3O19P2 (1141.5252)


   

CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/6 keto-PGF1alpha)

CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/6 keto-PGF1alpha)

C54H85N3O19P2 (1141.5252)


   

hexacosanoyl-CoA(4-)

hexacosanoyl-CoA(4-)

C47H82N7O17P3S (1141.4701)


A saturated fatty acyl-CoA(4-) oxoanion arising from deprotonation of the phosphate and diphosphate OH groups of hexacosanoyl-CoA; the major species at pH 7.3.