Exact Mass: 1119.6500234

Exact Mass Matches: 1119.6500234

Found 28 metabolites which its exact mass value is equals to given mass value 1119.6500234, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

CDP-DG(a-25:0/18:1(12Z)-O(9S,10R))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(22-methyltetracosanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C55H99N3O16P2 (1119.6500234)


CDP-DG(a-25:0/18:1(12Z)-O(9S,10R)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(a-25:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:1(12Z)-O(9S,10R)/a-25:0)

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(22-methyltetracosanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C55H99N3O16P2 (1119.6500234)


CDP-DG(18:1(12Z)-O(9S,10R)/a-25:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:1(12Z)-O(9S,10R)/a-25:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(a-25:0/18:1(9Z)-O(12,13))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(22-methyltetracosanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C55H99N3O16P2 (1119.6500234)


CDP-DG(a-25:0/18:1(9Z)-O(12,13)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(a-25:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:1(9Z)-O(12,13)/a-25:0)

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(22-methyltetracosanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)phosphinate

C55H99N3O16P2 (1119.6500234)


CDP-DG(18:1(9Z)-O(12,13)/a-25:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:1(9Z)-O(12,13)/a-25:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-22:0/20:3(8Z,11Z,14Z)-2OH(5,6))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(20-methylhenicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C54H95N3O17P2 (1119.61364)


CDP-DG(i-22:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-22:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 20-methylheneicosanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-22:0)

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(20-methylhenicosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)phosphinate

C54H95N3O17P2 (1119.61364)


CDP-DG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-22:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-22:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 20-methylheneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   
   

CDP-DG(a-25:0/18:1(12Z)-O(9S,10R))

CDP-DG(a-25:0/18:1(12Z)-O(9S,10R))

C55H99N3O16P2 (1119.6500234)


   

CDP-DG(18:1(12Z)-O(9S,10R)/a-25:0)

CDP-DG(18:1(12Z)-O(9S,10R)/a-25:0)

C55H99N3O16P2 (1119.6500234)


   

CDP-DG(a-25:0/18:1(9Z)-O(12,13))

CDP-DG(a-25:0/18:1(9Z)-O(12,13))

C55H99N3O16P2 (1119.6500234)


   

CDP-DG(18:1(9Z)-O(12,13)/a-25:0)

CDP-DG(18:1(9Z)-O(12,13)/a-25:0)

C55H99N3O16P2 (1119.6500234)


   

CDP-DG(i-22:0/20:3(8Z,11Z,14Z)-2OH(5,6))

CDP-DG(i-22:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C54H95N3O17P2 (1119.61364)


   

CDP-DG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-22:0)

CDP-DG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-22:0)

C54H95N3O17P2 (1119.61364)


   

(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadeca-4,8-dien-2-yl]hexacosa-5,8,11,14,17,20,23-heptaenamide

(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadeca-4,8-dien-2-yl]hexacosa-5,8,11,14,17,20,23-heptaenamide

C60H97NO18 (1119.6705302)


   

(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]octacosa-7,10,13,16,19,22,25-heptaenamide

(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]octacosa-7,10,13,16,19,22,25-heptaenamide

C60H97NO18 (1119.6705302)


   

(6Z,9Z,12Z,15Z,18Z,21Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctadeca-4,8,12-trien-2-yl]tetracosa-6,9,12,15,18,21-hexaenamide

(6Z,9Z,12Z,15Z,18Z,21Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctadeca-4,8,12-trien-2-yl]tetracosa-6,9,12,15,18,21-hexaenamide

C60H97NO18 (1119.6705302)


   

(10Z,13Z,16Z,19Z,22Z,25Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]octacosa-10,13,16,19,22,25-hexaenamide

(10Z,13Z,16Z,19Z,22Z,25Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]octacosa-10,13,16,19,22,25-hexaenamide

C60H97NO18 (1119.6705302)


   

(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]triaconta-9,12,15,18,21,24,27-heptaenamide

(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]triaconta-9,12,15,18,21,24,27-heptaenamide

C60H97NO18 (1119.6705302)


   

(4Z,7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyicosa-4,8,12-trien-2-yl]docosa-4,7,10,13,16,19-hexaenamide

(4Z,7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyicosa-4,8,12-trien-2-yl]docosa-4,7,10,13,16,19-hexaenamide

C60H97NO18 (1119.6705302)


   

(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]tetratriaconta-10,13,16,19,22,25,28,31-octaenamide

(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]tetratriaconta-10,13,16,19,22,25,28,31-octaenamide

C60H97NO18 (1119.6705302)


   

(8Z,11Z,14Z,17Z,20Z,23Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadeca-4,8,12-trien-2-yl]hexacosa-8,11,14,17,20,23-hexaenamide

(8Z,11Z,14Z,17Z,20Z,23Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadeca-4,8,12-trien-2-yl]hexacosa-8,11,14,17,20,23-hexaenamide

C60H97NO18 (1119.6705302)


   

(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]triaconta-6,9,12,15,18,21,24,27-octaenamide

(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]triaconta-6,9,12,15,18,21,24,27-octaenamide

C60H97NO18 (1119.6705302)


   

(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]dotriaconta-8,11,14,17,20,23,26,29-octaenamide

(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]dotriaconta-8,11,14,17,20,23,26,29-octaenamide

C60H97NO18 (1119.6705302)


   

(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydecan-2-yl]dotriaconta-5,8,11,14,17,20,23,26,29-nonaenamide

(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydecan-2-yl]dotriaconta-5,8,11,14,17,20,23,26,29-nonaenamide

C60H97NO18 (1119.6705302)


   

(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenamide

(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenamide

C60H97NO18 (1119.6705302)


   

[(3s,6r,9s,12r,15s,18s,21r,24s,27r,33as)-12,15,24-tris[(2s)-butan-2-yl]-9-(carboxymethyl)-4,16,22-trihydroxy-3,6,21-triisopropyl-2,8,11,14,20,27-hexamethyl-1,7,10,13,19,25,28-heptaoxo-3h,6h,9h,12h,15h,18h,21h,24h,27h,30h,31h,32h,33h,33ah-pyrido[1,2-d]1-oxa-4,7,10,13,16,19,22,25,28-nonaazacyclotriacontan-18-yl]acetic acid

[(3s,6r,9s,12r,15s,18s,21r,24s,27r,33as)-12,15,24-tris[(2s)-butan-2-yl]-9-(carboxymethyl)-4,16,22-trihydroxy-3,6,21-triisopropyl-2,8,11,14,20,27-hexamethyl-1,7,10,13,19,25,28-heptaoxo-3h,6h,9h,12h,15h,18h,21h,24h,27h,30h,31h,32h,33h,33ah-pyrido[1,2-d]1-oxa-4,7,10,13,16,19,22,25,28-nonaazacyclotriacontan-18-yl]acetic acid

C55H93N9O15 (1119.6790788)


   

[(3s,6s,9s,12s,15s,18s,21s,24s,27r,33as)-12,15-bis[(2s)-butan-2-yl]-9-(carboxymethyl)-4,16,22-trihydroxy-3,6,21-triisopropyl-2,8,11,14,20,27-hexamethyl-24-(2-methylpropyl)-1,7,10,13,19,25,28-heptaoxo-3h,6h,9h,12h,15h,18h,21h,24h,27h,30h,31h,32h,33h,33ah-pyrido[1,2-d]1-oxa-4,7,10,13,16,19,22,25,28-nonaazacyclotriacontan-18-yl]acetic acid

[(3s,6s,9s,12s,15s,18s,21s,24s,27r,33as)-12,15-bis[(2s)-butan-2-yl]-9-(carboxymethyl)-4,16,22-trihydroxy-3,6,21-triisopropyl-2,8,11,14,20,27-hexamethyl-24-(2-methylpropyl)-1,7,10,13,19,25,28-heptaoxo-3h,6h,9h,12h,15h,18h,21h,24h,27h,30h,31h,32h,33h,33ah-pyrido[1,2-d]1-oxa-4,7,10,13,16,19,22,25,28-nonaazacyclotriacontan-18-yl]acetic acid

C55H93N9O15 (1119.6790788)


   

[9-(carboxymethyl)-4,16,22-trihydroxy-3,6,21-triisopropyl-2,8,11,14,20,27-hexamethyl-24-(2-methylpropyl)-1,7,10,13,19,25,28-heptaoxo-12,15-bis(sec-butyl)-3h,6h,9h,12h,15h,18h,21h,24h,27h,30h,31h,32h,33h,33ah-pyrido[1,2-d]1-oxa-4,7,10,13,16,19,22,25,28-nonaazacyclotriacontan-18-yl]acetic acid

[9-(carboxymethyl)-4,16,22-trihydroxy-3,6,21-triisopropyl-2,8,11,14,20,27-hexamethyl-24-(2-methylpropyl)-1,7,10,13,19,25,28-heptaoxo-12,15-bis(sec-butyl)-3h,6h,9h,12h,15h,18h,21h,24h,27h,30h,31h,32h,33h,33ah-pyrido[1,2-d]1-oxa-4,7,10,13,16,19,22,25,28-nonaazacyclotriacontan-18-yl]acetic acid

C55H93N9O15 (1119.6790788)