Exact Mass: 1115.5875934

Exact Mass Matches: 1115.5875934

Found 22 metabolites which its exact mass value is equals to given mass value 1115.5875934, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

CDP-DG(22:3(10Z,13Z,16Z)/5-iso PGF2VI)

[(1R,9R,13Z,16R,17S,19R,20S,21S,22S,24R)-24-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,17,19,21,22-hexahydroxy-20-[(1E,3R)-3-hydroxyoct-1-en-1-yl]-4,6,11-trioxo-3,5,7,10,23-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[14.6.2]tetracos-13-en-9-yl]methyl (10Z,13Z,16Z)-tricosa-10,13,16-trienoate

C53H87N3O18P2 (1115.5459581999999)


CDP-DG(22:3(10Z,13Z,16Z)/5-iso PGF2VI) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:3(10Z,13Z,16Z)/5-iso PGF2VI), in particular, consists of one chain of one 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(5-iso PGF2VI/22:3(10Z,13Z,16Z))

(1R,9R,14Z,17R,18S,20R,21S,22S,23S,25R)-25-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,18,20,22,23-hexahydroxy-21-[(1E,3R)-3-hydroxyoct-1-en-1-yl]-4,6,12-trioxo-3,5,7,11,24-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[15.6.2]pentacos-14-en-9-yl (10Z,13Z,16Z)-tricosa-10,13,16-trienoate

C53H87N3O18P2 (1115.5459581999999)


CDP-DG(5-iso PGF2VI/22:3(10Z,13Z,16Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(5-iso PGF2VI/22:3(10Z,13Z,16Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-22:0/PGJ2)

[(1R,9R,15Z,18S,22R,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,23,24-tetrahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11,21-tetraoxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacosa-15,19-dien-9-yl]methyl 20-methylhenicosanoate

C54H91N3O17P2 (1115.5823416)


CDP-DG(i-22:0/PGJ2) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-22:0/PGJ2), in particular, consists of one chain of one 20-methylheneicosanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGJ2/i-22:0)

(1R,9R,16Z,19S,23R,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,24,25-tetrahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12,22-tetraoxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacosa-16,20-dien-9-yl 20-methylhenicosanoate

C54H91N3O17P2 (1115.5823416)


CDP-DG(PGJ2/i-22:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGJ2/i-22:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 20-methylheneicosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   

(4aR,5R,6aS,6bR,10S,12aR)-10-[(2R,3R,4R,5S,6R)-3-acetamido-6-[[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-methyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxymethyl]-4,5-dihydroxyoxan-2-yl]oxy-2,2,6a,6b,9,9,12a-heptamethyl-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

(4aR,5R,6aS,6bR,10S,12aR)-10-[(2R,3R,4R,5S,6R)-3-acetamido-6-[[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-methyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxymethyl]-4,5-dihydroxyoxan-2-yl]oxy-2,2,6a,6b,9,9,12a-heptamethyl-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C55H89NO22 (1115.5875934)


   
   

(4aR,5R,6aS,6bR,10S,12aR)-10-[(2R,3R,4R,5S,6R)-3-acetamido-6-[[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-methyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxymethyl]-4,5-dihydroxyoxan-2-yl]oxy-2,2,6a,6b,9,9,12a-heptamethyl-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid_60.7\\%

(4aR,5R,6aS,6bR,10S,12aR)-10-[(2R,3R,4R,5S,6R)-3-acetamido-6-[[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-methyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxymethyl]-4,5-dihydroxyoxan-2-yl]oxy-2,2,6a,6b,9,9,12a-heptamethyl-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid_60.7\\%

C55H89NO22 (1115.5875934)


   

(4aR,5R,6aS,6bR,10S,12aR)-10-[(2R,3R,4R,5S,6R)-3-acetamido-6-[[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-methyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxymethyl]-4,5-dihydroxyoxan-2-yl]oxy-2,2,6a,6b,9,9,12a-heptamethyl-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid_major

(4aR,5R,6aS,6bR,10S,12aR)-10-[(2R,3R,4R,5S,6R)-3-acetamido-6-[[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-methyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxymethyl]-4,5-dihydroxyoxan-2-yl]oxy-2,2,6a,6b,9,9,12a-heptamethyl-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid_major

C55H89NO22 (1115.5875934)


   

(4aR,5R,6aS,6bR,10S,12aR)-10-[(2R,3R,4R,5S,6R)-3-acetamido-6-[[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-methyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxymethyl]-4,5-dihydroxyoxan-2-yl]oxy-2,2,6a,6b,9,9,12a-heptamethyl-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid_39.2\\%

(4aR,5R,6aS,6bR,10S,12aR)-10-[(2R,3R,4R,5S,6R)-3-acetamido-6-[[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-methyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxymethyl]-4,5-dihydroxyoxan-2-yl]oxy-2,2,6a,6b,9,9,12a-heptamethyl-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid_39.2\\%

C55H89NO22 (1115.5875934)


   

(4aR,5R,6aS,6bR,10S,12aR)-10-[(2R,3R,4R,5S,6R)-3-acetamido-6-[[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-methyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxymethyl]-4,5-dihydroxyoxan-2-yl]oxy-2,2,6a,6b,9,9,12a-heptamethyl-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid_minor

(4aR,5R,6aS,6bR,10S,12aR)-10-[(2R,3R,4R,5S,6R)-3-acetamido-6-[[(2R,3R,4S,5R,6R)-4,5-dihydroxy-6-methyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxymethyl]-4,5-dihydroxyoxan-2-yl]oxy-2,2,6a,6b,9,9,12a-heptamethyl-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid_minor

C55H89NO22 (1115.5875934)


   

[D-Pro4,D-Trp7,9,Nle11]-Substance P (4-11)

[D-Pro4,D-Trp7,9,Nle11]-Substance P (4-11)

C58H77N13O10 (1115.5916062)


   
   
   
   
   

Grassypeptolide D

Grassypeptolide D

C57H81N9O10S2 (1115.5547526)


A natural product found in Leptolyngbya speciesRS03.

   

Grassypeptolide E

Grassypeptolide E

C57H81N9O10S2 (1115.5547526)


A natural product found in Leptolyngbya speciesRS03.

   

(2r,5s,9s,12s,18s,21s,24r,25r,28r,31r,34r)-9,21-dibenzyl-2-ethyl-4,27,30-trihydroxy-28-[(1r)-1-hydroxyethyl]-18-isopropyl-5,10,19,24,25,32-hexamethyl-31-(2-methylpropyl)-22-oxa-7,36-dithia-3,10,16,19,26,29,32,37,38-nonaazatetracyclo[32.2.1.1⁵,⁸.0¹²,¹⁶]octatriaconta-1(37),3,8(38),26,29-pentaene-11,17,20,23,33-pentone

(2r,5s,9s,12s,18s,21s,24r,25r,28r,31r,34r)-9,21-dibenzyl-2-ethyl-4,27,30-trihydroxy-28-[(1r)-1-hydroxyethyl]-18-isopropyl-5,10,19,24,25,32-hexamethyl-31-(2-methylpropyl)-22-oxa-7,36-dithia-3,10,16,19,26,29,32,37,38-nonaazatetracyclo[32.2.1.1⁵,⁸.0¹²,¹⁶]octatriaconta-1(37),3,8(38),26,29-pentaene-11,17,20,23,33-pentone

C57H81N9O10S2 (1115.5547526)


   

2-({[21-(3-carbamimidamidopropyl)-10,13,16,19,22,25-hexahydroxy-9-{[hydroxy(5-hydroxy-3,4-dihydro-2h-pyrrol-2-yl)methylidene]amino}-8-isopropyl-12-(2-methylpropyl)-15-(sec-butyl)-2,11,14,17,20,23,26,30,32-nonaazapentacyclo[16.14.2.1³,⁷.1²⁹,³².0⁴,³³]hexatriaconta-1(33),3(36),4,6,10,13,16,19,22,25,29(35),30-dodecaen-27-yl](hydroxy)methylidene}amino)butanedioic acid

2-({[21-(3-carbamimidamidopropyl)-10,13,16,19,22,25-hexahydroxy-9-{[hydroxy(5-hydroxy-3,4-dihydro-2h-pyrrol-2-yl)methylidene]amino}-8-isopropyl-12-(2-methylpropyl)-15-(sec-butyl)-2,11,14,17,20,23,26,30,32-nonaazapentacyclo[16.14.2.1³,⁷.1²⁹,³².0⁴,³³]hexatriaconta-1(33),3(36),4,6,10,13,16,19,22,25,29(35),30-dodecaen-27-yl](hydroxy)methylidene}amino)butanedioic acid

C52H73N15O13 (1115.5512008)


   

2-hydroxy-3-[(2-hydroxy-1-{[1-({2-hydroxy-1-[(1-{[1-({2-hydroxy-1-[(1-hydroxy-2-oxopiperidin-3-yl)-c-hydroxycarbonimidoyl]ethyl}-c-hydroxycarbonimidoyl)prop-1-en-1-yl]-c-hydroxycarbonimidoyl}-4-(n-hydroxyacetamido)butyl)-c-hydroxycarbonimidoyl]ethyl}-c-hydroxycarbonimidoyl)-3-(c-hydroxycarbonimidoyl)propyl]-c-hydroxycarbonimidoyl}ethyl)-c-hydroxycarbonimidoyl]-3-[(1-hydroxytetradecylidene)amino]propanoic acid

2-hydroxy-3-[(2-hydroxy-1-{[1-({2-hydroxy-1-[(1-{[1-({2-hydroxy-1-[(1-hydroxy-2-oxopiperidin-3-yl)-c-hydroxycarbonimidoyl]ethyl}-c-hydroxycarbonimidoyl)prop-1-en-1-yl]-c-hydroxycarbonimidoyl}-4-(n-hydroxyacetamido)butyl)-c-hydroxycarbonimidoyl]ethyl}-c-hydroxycarbonimidoyl)-3-(c-hydroxycarbonimidoyl)propyl]-c-hydroxycarbonimidoyl}ethyl)-c-hydroxycarbonimidoyl]-3-[(1-hydroxytetradecylidene)amino]propanoic acid

C48H81N11O19 (1115.5709916)