Exact Mass: 1097.6002982

Exact Mass Matches: 1097.6002982

Found 33 metabolites which its exact mass value is equals to given mass value 1097.6002982, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PGP(i-24:0/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-({hydroxy[(2S)-2-hydroxy-3-(phosphonooxy)propoxy]phosphoryl}oxy)-3-[(22-methyltricosanoyl)oxy]propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C53H97NO16P2S (1097.6002982)


PGP(i-24:0/LTE4) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-24:0/LTE4), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(LTE4/i-24:0)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-({hydroxy[(2S)-2-hydroxy-3-(phosphonooxy)propoxy]phosphoryl}oxy)-2-[(22-methyltricosanoyl)oxy]propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C53H97NO16P2S (1097.6002982)


PGP(LTE4/i-24:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(LTE4/i-24:0), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

CDP-DG(i-20:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C54H89N3O16P2 (1097.5717774)


CDP-DG(i-20:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-20:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-20:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C54H89N3O16P2 (1097.5717774)


CDP-DG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-20:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-20:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-20:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C54H89N3O16P2 (1097.5717774)


CDP-DG(i-20:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-20:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-20:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C54H89N3O16P2 (1097.5717774)


CDP-DG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-20:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-20:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-20:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C54H89N3O16P2 (1097.5717774)


CDP-DG(i-20:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-20:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-20:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C54H89N3O16P2 (1097.5717774)


CDP-DG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-20:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-20:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-20:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C54H89N3O16P2 (1097.5717774)


CDP-DG(i-20:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-20:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-20:0)

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C54H89N3O16P2 (1097.5717774)


CDP-DG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-20:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-20:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-20:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(18-methylnonadecanoyl)oxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)phosphinate

C54H89N3O16P2 (1097.5717774)


CDP-DG(i-20:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-20:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-20:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(18-methylnonadecanoyl)oxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C54H89N3O16P2 (1097.5717774)


CDP-DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-20:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-20:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

Nordidemnin B

Nordidemnin B

C56H87N7O15 (1097.6259832)


A natural product found in Tistrella mobilis.

   

H-Leu-DLeu-His-Asp-His-Pro-Asn-Pro-Arg-OH|L-(D-Leu)-HDHPNPR

H-Leu-DLeu-His-Asp-His-Pro-Asn-Pro-Arg-OH|L-(D-Leu)-HDHPNPR

C48H75N17O13 (1097.572998)


   
   
   
   

CDP-DG(i-20:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

CDP-DG(i-20:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C54H89N3O16P2 (1097.5717774)


   

CDP-DG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-20:0)

CDP-DG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-20:0)

C54H89N3O16P2 (1097.5717774)


   

CDP-DG(i-20:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

CDP-DG(i-20:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C54H89N3O16P2 (1097.5717774)


   

CDP-DG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-20:0)

CDP-DG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-20:0)

C54H89N3O16P2 (1097.5717774)


   

CDP-DG(i-20:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

CDP-DG(i-20:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C54H89N3O16P2 (1097.5717774)


   

CDP-DG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-20:0)

CDP-DG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-20:0)

C54H89N3O16P2 (1097.5717774)


   

CDP-DG(i-20:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

CDP-DG(i-20:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C54H89N3O16P2 (1097.5717774)


   

CDP-DG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-20:0)

CDP-DG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-20:0)

C54H89N3O16P2 (1097.5717774)


   

CDP-DG(i-20:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

CDP-DG(i-20:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C54H89N3O16P2 (1097.5717774)


   

CDP-DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-20:0)

CDP-DG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-20:0)

C54H89N3O16P2 (1097.5717774)


   

Unk-Pro-DL-N(Me)Leu-Thr(1)-Unk-Leu-DL-Pro-N(Me)Tyr(Me)-(1)

Unk-Pro-DL-N(Me)Leu-Thr(1)-Unk-Leu-DL-Pro-N(Me)Tyr(Me)-(1)

C56H87N7O15 (1097.6259832)


   

[(2S,3R,4R,5R,6R)-2-[(3R,4S,5R,6S)-5-[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-[[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxy-4-hydroxy-6-[[(3S,5R,10S,13R,14R,17R)-4,4,10,13-tetramethyl-17-[(2R)-6-methyl-4-oxohept-5-en-2-yl]-1,2,3,5,6,7,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]-(1-hydroxyethylidene)azanium

[(2S,3R,4R,5R,6R)-2-[(3R,4S,5R,6S)-5-[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-[[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxy-4-hydroxy-6-[[(3S,5R,10S,13R,14R,17R)-4,4,10,13-tetramethyl-17-[(2R)-6-methyl-4-oxohept-5-en-2-yl]-1,2,3,5,6,7,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]-(1-hydroxyethylidene)azanium

C55H89N2O20+ (1097.6008374)


   

n-[(3s,6r,7s,10r,11s,15s,17r,20s,25as)-8,11,18-trihydroxy-10,15-diisopropyl-3-[(4-methoxyphenyl)methyl]-2,6,17-trimethyl-20-(2-methylpropyl)-1,4,13,16,21-pentaoxo-3h,6h,7h,10h,11h,12h,15h,17h,20h,23h,24h,25h,25ah-pyrrolo[2,1-f]1,15-dioxa-4,7,10,20-tetraazacyclotricosan-7-yl]-2-{1-[(2s)-1-[(2s)-2-hydroxypropanoyl]pyrrolidin-2-yl]-n-methylformamido}-4-methylpentanimidic acid

n-[(3s,6r,7s,10r,11s,15s,17r,20s,25as)-8,11,18-trihydroxy-10,15-diisopropyl-3-[(4-methoxyphenyl)methyl]-2,6,17-trimethyl-20-(2-methylpropyl)-1,4,13,16,21-pentaoxo-3h,6h,7h,10h,11h,12h,15h,17h,20h,23h,24h,25h,25ah-pyrrolo[2,1-f]1,15-dioxa-4,7,10,20-tetraazacyclotricosan-7-yl]-2-{1-[(2s)-1-[(2s)-2-hydroxypropanoyl]pyrrolidin-2-yl]-n-methylformamido}-4-methylpentanimidic acid

C56H87N7O15 (1097.6259832)


   

2-{1-[(2s)-1-[(2s)-2-hydroxypropanoyl]pyrrolidin-2-yl]-n-methylformamido}-4-methyl-n-[(3s,6r,7s,10r,11s,15s,17r,20s)-8,11,18-trihydroxy-10,15-diisopropyl-3-[(4-methoxyphenyl)methyl]-2,6,17-trimethyl-20-(2-methylpropyl)-1,4,13,16,21-pentaoxo-3h,6h,7h,10h,11h,12h,15h,17h,20h,23h,24h,25h,25ah-pyrrolo[2,1-f]1,15-dioxa-4,7,10,20-tetraazacyclotricosan-7-yl]pentanimidic acid

2-{1-[(2s)-1-[(2s)-2-hydroxypropanoyl]pyrrolidin-2-yl]-n-methylformamido}-4-methyl-n-[(3s,6r,7s,10r,11s,15s,17r,20s)-8,11,18-trihydroxy-10,15-diisopropyl-3-[(4-methoxyphenyl)methyl]-2,6,17-trimethyl-20-(2-methylpropyl)-1,4,13,16,21-pentaoxo-3h,6h,7h,10h,11h,12h,15h,17h,20h,23h,24h,25h,25ah-pyrrolo[2,1-f]1,15-dioxa-4,7,10,20-tetraazacyclotricosan-7-yl]pentanimidic acid

C56H87N7O15 (1097.6259832)


   

2-{1-[1-(2-hydroxypropanoyl)pyrrolidin-2-yl]-n-methylformamido}-4-methyl-n-{8,11,18-trihydroxy-10,15-diisopropyl-3-[(4-methoxyphenyl)methyl]-2,6,17-trimethyl-20-(2-methylpropyl)-1,4,13,16,21-pentaoxo-3h,6h,7h,10h,11h,12h,15h,17h,20h,23h,24h,25h,25ah-pyrrolo[2,1-f]1,15-dioxa-4,7,10,20-tetraazacyclotricosan-7-yl}pentanimidic acid

2-{1-[1-(2-hydroxypropanoyl)pyrrolidin-2-yl]-n-methylformamido}-4-methyl-n-{8,11,18-trihydroxy-10,15-diisopropyl-3-[(4-methoxyphenyl)methyl]-2,6,17-trimethyl-20-(2-methylpropyl)-1,4,13,16,21-pentaoxo-3h,6h,7h,10h,11h,12h,15h,17h,20h,23h,24h,25h,25ah-pyrrolo[2,1-f]1,15-dioxa-4,7,10,20-tetraazacyclotricosan-7-yl}pentanimidic acid

C56H87N7O15 (1097.6259832)


   

(2s)-n-[(3s,6s,7r,10s,11s,15r,17r,20s,25ar)-8,11,18-trihydroxy-10,15-diisopropyl-3-[(4-methoxyphenyl)methyl]-2,6,17-trimethyl-20-(2-methylpropyl)-1,4,13,16,21-pentaoxo-3h,6h,7h,10h,11h,12h,15h,17h,20h,23h,24h,25h,25ah-pyrrolo[2,1-f]1,15-dioxa-4,7,10,20-tetraazacyclotricosan-7-yl]-2-{1-[(2r)-1-[(2s)-2-hydroxypropanoyl]pyrrolidin-2-yl]-n-methylformamido}-4-methylpentanimidic acid

(2s)-n-[(3s,6s,7r,10s,11s,15r,17r,20s,25ar)-8,11,18-trihydroxy-10,15-diisopropyl-3-[(4-methoxyphenyl)methyl]-2,6,17-trimethyl-20-(2-methylpropyl)-1,4,13,16,21-pentaoxo-3h,6h,7h,10h,11h,12h,15h,17h,20h,23h,24h,25h,25ah-pyrrolo[2,1-f]1,15-dioxa-4,7,10,20-tetraazacyclotricosan-7-yl]-2-{1-[(2r)-1-[(2s)-2-hydroxypropanoyl]pyrrolidin-2-yl]-n-methylformamido}-4-methylpentanimidic acid

C56H87N7O15 (1097.6259832)