Exact Mass: 1075.5299148

Exact Mass Matches: 1075.5299148

Found 94 metabolites which its exact mass value is equals to given mass value 1075.5299148, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Prorocentrolide B

[(10E,12E,23E,47E)-14,18,19,22,31,33,40,41-octahydroxy-2,11,23,47,50-pentamethyl-35-methylidene-27-oxo-26,53,54,55-tetraoxa-6-azaheptacyclo[23.21.5.13,45.117,21.129,32.139,43.02,7]pentapentaconta-6,10,12,23,45,47-hexaen-30-yl] hydrogen sulfate

C56H85NO17S (1075.553792)


   

Bradykinin hydroxyproline

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-(2-{[(2S,4R)-1-[(2S)-1-[(2S)-2-amino-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]-4-hydroxypyrrolidin-2-yl]formamido}acetamido)-3-phenylpropanamido]-3-hydroxypropanoyl]pyrrolidin-2-yl]formamido}-3-phenylpropanamido]-5-carbamimidamidopentanoic acid

C50H73N15O12 (1075.5562857999998)


Bradykinin hydroxyproline is a bradykinin analog, where the third amino acid, proline, is replaced with hydroxyproline. Bradykinin is a vasoactive kinin that is liberated from its substrate kininogen by the action of kallikrein, and is known to be involved in a wide range of biologic processes. It may play an important role in blood pressure regulation and the maintenance of normal blood flow. Moreover, in various pathologic states of the cardiovascular system, it appears to provide protective actions against ischemic injury, ventricular hypertrophy, congestive heart failure, and thrombosis. Bradykinin is a potent vasodilator that acts through endothelial B2 kinin receptors to stimulate the release of nitric oxide and endothelium-derived hyperpolarizing factor. Bradykinin deficiency states may play a role in some forms of hypertension, and a relative deficiency in bradykinin may be a contributing factor to worsening heart failure. Experimental studies revealed that mice lacking the B2 receptor gene were more likely to develop hypertension, cardiac hypertrophy, and myocardial damage. Kinins exert several biologic actions. They are involved in nociception, inflammation, capillary permeability, reactive hyperemia, and stimulation of cellular glucose uptake. Bradykinin is a polypeptide that circulates in the plasma in very low concentrations in comparison with the amount of bradykinin found in various body tissues. Kininogens ([alpha] 2 globulins) are synthesized in the liver and circulate at high concentrations in the plasma. There are two kininogenases that convert kininogens into bradykinin: plasma kallikrein, also known as Fletcher factor, and glandular kallikrein, also known as tissue kallikrein. (PMID: 11975815) [HMDB] Bradykinin hydroxyproline is a bradykinin analog where the third amino acid, proline, is replaced with hydroxyproline. Bradykinin is a vasoactive kinin that is liberated from its substrate kininogen by the action of kallikrein, and is known to be involved in a wide range of biologic processes. It may play an important role in blood pressure regulation and the maintenance of normal blood flow. Moreover, in various pathologic states of the cardiovascular system, it appears to provide protective actions against ischemic injury, ventricular hypertrophy, congestive heart failure, and thrombosis. Bradykinin is a potent vasodilator that acts through endothelial B2 kinin receptors to stimulate the release of nitric oxide and endothelium-derived hyperpolarizing factor. Bradykinin deficiency states may play a role in some forms of hypertension, and a relative deficiency in bradykinin may be a contributing factor to worsening heart failure. Experimental studies revealed that mice lacking the B2 receptor gene were more likely to develop hypertension, cardiac hypertrophy, and myocardial damage. Kinins exert several biologic actions. They are involved in nociception, inflammation, capillary permeability, reactive hyperemia, and stimulation of cellular glucose uptake. Bradykinin is a polypeptide that circulates in the plasma in very low concentrations in comparison with the amount of bradykinin found in various body tissues. Kininogens (alpha-2 globulins) are synthesized in the liver and circulate at high concentrations in the plasma. There are two kininogenases that convert kininogens into bradykinin: plasma kallikrein, also known as Fletcher factor, and glandular kallikrein, also known as tissue kallikrein (PMID: 11975815). [Hyp3]-Bradykinin, naturally occurring peptide hormone, is a bradykinin receptor agonist. [Hyp3]-Bradykinin interacts with B2-bradykinin receptors and stimulates inositol phosphate production in cultured human fibroblasts[1].

   

CDP-DG(20:4(5Z,8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z))

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C54H83N3O15P2 (1075.5299148)


CDP-DG(20:4(5Z,8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(20:4(5Z,8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of osbond acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z))

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C54H83N3O15P2 (1075.5299148)


CDP-DG(20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of clupanodonic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z))

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C54H83N3O15P2 (1075.5299148)


CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of osbond acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z))

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C54H83N3O15P2 (1075.5299148)


CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of clupanodonic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(5Z,8Z,11Z))

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C54H83N3O15P2 (1075.5299148)


CDP-DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(5Z,8Z,11Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of mead acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z))

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)phosphinate

C54H83N3O15P2 (1075.5299148)


CDP-DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-(octadecanoyloxy)-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:0)

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-(octadecanoyloxy)-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)phosphinate

C50H83N3O18P2 (1075.5146598)


CDP-DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:1(11Z)/PGE2)

[(1R,9R,15Z,18R,21R,22S,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,21,23,24-pentahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11,19-tetraoxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacos-15-en-9-yl]methyl (11Z)-octadec-11-enoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:1(11Z)/PGE2) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:1(11Z)/PGE2), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGE2/18:1(11Z))

(1R,9R,16Z,19R,22R,23S,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,22,24,25-pentahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12,20-tetraoxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacos-16-en-9-yl (11Z)-octadec-11-enoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(PGE2/18:1(11Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGE2/18:1(11Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:1(11Z)/PGD2)

[(1R,9R,15Z,18S,19S,22R,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,23,24-pentahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11,21-tetraoxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacos-15-en-9-yl]methyl (11Z)-octadec-11-enoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:1(11Z)/PGD2) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:1(11Z)/PGD2), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGD2/18:1(11Z))

(1R,9R,16Z,19S,20S,23R,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,24,25-pentahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12,22-tetraoxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacos-16-en-9-yl (11Z)-octadec-11-enoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(PGD2/18:1(11Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGD2/18:1(11Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:1(11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:1(11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:1(11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(11Z))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C50H83N3O18P2 (1075.5146598)


CDP-DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(11Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(11Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:1(9Z)/PGE2)

[(1R,9R,15Z,18R,21R,22S,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,21,23,24-pentahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11,19-tetraoxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacos-15-en-9-yl]methyl (9Z)-octadec-9-enoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:1(9Z)/PGE2) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:1(9Z)/PGE2), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGE2/18:1(9Z))

(1R,9R,16Z,19R,22R,23S,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,22,24,25-pentahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12,20-tetraoxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacos-16-en-9-yl (9Z)-octadec-9-enoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(PGE2/18:1(9Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGE2/18:1(9Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:1(9Z)/PGD2)

[(1R,9R,15Z,18S,19S,22R,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,23,24-pentahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11,21-tetraoxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacos-15-en-9-yl]methyl (9Z)-octadec-9-enoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:1(9Z)/PGD2) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:1(9Z)/PGD2), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGD2/18:1(9Z))

(1R,9R,16Z,19S,20S,23R,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,24,25-pentahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12,22-tetraoxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacos-16-en-9-yl (9Z)-octadec-9-enoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(PGD2/18:1(9Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGD2/18:1(9Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(9Z))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C50H83N3O18P2 (1075.5146598)


CDP-DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(9Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(9Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:2(9Z,11Z)/PGF2alpha)

[(1R,9R,15E,18S,19S,21R,22S,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,21,23,24-hexahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11-trioxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacos-15-en-9-yl]methyl (9Z,11Z)-octadeca-9,11-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:2(9Z,11Z)/PGF2alpha) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:2(9Z,11Z)/PGF2alpha), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGF2alpha/18:2(9Z,11Z))

(1R,9R,16E,19S,20S,22R,23S,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,22,24,25-hexahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12-trioxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacos-16-en-9-yl (9Z,11Z)-octadeca-9,11-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(PGF2alpha/18:2(9Z,11Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGF2alpha/18:2(9Z,11Z)), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:2(9Z,11Z)/PGE1)

[(1R,9R,18R,21R,22S,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,21,23,24-pentahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11,19-tetraoxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacosan-9-yl]methyl (9Z,11Z)-octadeca-9,11-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:2(9Z,11Z)/PGE1) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:2(9Z,11Z)/PGE1), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGE1/18:2(9Z,11Z))

(1R,9R,19R,22R,23S,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,22,24,25-pentahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12,20-tetraoxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacosan-9-yl (9Z,11Z)-octadeca-9,11-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(PGE1/18:2(9Z,11Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGE1/18:2(9Z,11Z)), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:2(9Z,11Z)/PGD1)

[(1R,9R,18S,19S,22R,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,23,24-pentahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11,21-tetraoxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacosan-9-yl]methyl (9Z,11Z)-octadeca-9,11-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:2(9Z,11Z)/PGD1) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:2(9Z,11Z)/PGD1), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGD1/18:2(9Z,11Z))

(1R,9R,19S,20S,23R,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,24,25-pentahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12,22-tetraoxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacosan-9-yl (9Z,11Z)-octadeca-9,11-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(PGD1/18:2(9Z,11Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGD1/18:2(9Z,11Z)), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:2(9Z,12Z)/PGF2alpha)

[(1R,9R,15E,18S,19S,21R,22S,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,21,23,24-hexahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11-trioxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacos-15-en-9-yl]methyl (9Z,12Z)-octadeca-9,12-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:2(9Z,12Z)/PGF2alpha) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:2(9Z,12Z)/PGF2alpha), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGF2alpha/18:2(9Z,12Z))

(1R,9R,16E,19S,20S,22R,23S,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,22,24,25-hexahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12-trioxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacos-16-en-9-yl (9Z,12Z)-octadeca-9,12-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(PGF2alpha/18:2(9Z,12Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGF2alpha/18:2(9Z,12Z)), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:2(9Z,12Z)/PGE1)

[(1R,9R,18R,21R,22S,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,21,23,24-pentahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11,19-tetraoxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacosan-9-yl]methyl (9Z,12Z)-octadeca-9,12-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:2(9Z,12Z)/PGE1) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:2(9Z,12Z)/PGE1), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGE1/18:2(9Z,12Z))

(1R,9R,19R,22R,23S,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,22,24,25-pentahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12,20-tetraoxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacosan-9-yl (9Z,12Z)-octadeca-9,12-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(PGE1/18:2(9Z,12Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGE1/18:2(9Z,12Z)), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:2(9Z,12Z)/PGD1)

[(1R,9R,18S,19S,22R,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,23,24-pentahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11,21-tetraoxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacosan-9-yl]methyl (9Z,12Z)-octadeca-9,12-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:2(9Z,12Z)/PGD1) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:2(9Z,12Z)/PGD1), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGD1/18:2(9Z,12Z))

(1R,9R,19S,20S,23R,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,24,25-pentahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12,22-tetraoxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacosan-9-yl (9Z,12Z)-octadeca-9,12-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(PGD1/18:2(9Z,12Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGD1/18:2(9Z,12Z)), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:3(6Z,9Z,12Z)/PGF1alpha)

[(1R,9R,18S,19S,21R,22S,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,21,23,24-hexahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11-trioxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacosan-9-yl]methyl (6Z,9Z,12Z)-octadeca-6,9,12-trienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:3(6Z,9Z,12Z)/PGF1alpha) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:3(6Z,9Z,12Z)/PGF1alpha), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGF1alpha/18:3(6Z,9Z,12Z))

(1R,9R,19S,20S,22R,23S,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,22,24,25-hexahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12-trioxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacosan-9-yl (6Z,9Z,12Z)-octadeca-6,9,12-trienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(PGF1alpha/18:3(6Z,9Z,12Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGF1alpha/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:3(9Z,12Z,15Z)/PGF1alpha)

[(1R,9R,18S,19S,21R,22S,23S,24S,26R)-26-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,19,21,23,24-hexahydroxy-22-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,11-trioxo-3,5,7,10,25-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[16.6.2]hexacosan-9-yl]methyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(18:3(9Z,12Z,15Z)/PGF1alpha) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:3(9Z,12Z,15Z)/PGF1alpha), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(PGF1alpha/18:3(9Z,12Z,15Z))

(1R,9R,19S,20S,22R,23S,24S,25S,27R)-27-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,20,22,24,25-hexahydroxy-23-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4,6,12-trioxo-3,5,7,11,26-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[17.6.2]heptacosan-9-yl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(PGF1alpha/18:3(9Z,12Z,15Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(PGF1alpha/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(20:2(11Z,14Z)/5-iso PGF2VI)

[(1R,9R,13Z,16R,17S,19R,20S,21S,22S,24R)-24-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,17,19,21,22-hexahydroxy-20-[(1E,3R)-3-hydroxyoct-1-en-1-yl]-4,6,11-trioxo-3,5,7,10,23-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[14.6.2]tetracos-13-en-9-yl]methyl (11Z,14Z)-icosa-11,14-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(20:2(11Z,14Z)/5-iso PGF2VI) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:2(11Z,14Z)/5-iso PGF2VI), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(5-iso PGF2VI/20:2(11Z,14Z))

(1R,9R,14Z,17R,18S,20R,21S,22S,23S,25R)-25-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-4,6,18,20,22,23-hexahydroxy-21-[(1E,3R)-3-hydroxyoct-1-en-1-yl]-4,6,12-trioxo-3,5,7,11,24-pentaoxa-4lambda5,6lambda5-diphosphabicyclo[15.6.2]pentacos-14-en-9-yl (11Z,14Z)-icosa-11,14-dienoate

C50H83N3O18P2 (1075.5146598)


CDP-DG(5-iso PGF2VI/20:2(11Z,14Z)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(5-iso PGF2VI/20:2(11Z,14Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(16-methylheptadecanoyl)oxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C50H83N3O18P2 (1075.5146598)


CDP-DG(i-18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-18:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)phosphinic acid

C50H83N3O18P2 (1075.5146598)


CDP-DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-18:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-18:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-19:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(17-methyloctadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C51H87N3O17P2 (1075.5510431999999)


CDP-DG(i-19:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-19:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-19:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(17-methyloctadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C51H87N3O17P2 (1075.5510431999999)


CDP-DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-19:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-19:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-19:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(17-methyloctadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C51H87N3O17P2 (1075.5510431999999)


CDP-DG(i-19:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-19:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-19:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(17-methyloctadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C51H87N3O17P2 (1075.5510431999999)


CDP-DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-19:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-19:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-19:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(17-methyloctadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C51H87N3O17P2 (1075.5510431999999)


CDP-DG(i-19:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-19:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-19:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(17-methyloctadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C51H87N3O17P2 (1075.5510431999999)


CDP-DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-19:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-19:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

5-O-D-Galaktopyranosyl-2-O-indol-3-acetyl-myrinosit-trimethylsilylether

5-O-D-Galaktopyranosyl-2-O-indol-3-acetyl-myrinosit-trimethylsilylether

C46H93NO12Si8 (1075.4851658)


   

Bradykinin hydroxyproline

3-(L-4-Hydroxyproline)bradykinin

C50H73N15O12 (1075.5562857999998)


[Hyp3]-Bradykinin, naturally occurring peptide hormone, is a bradykinin receptor agonist. [Hyp3]-Bradykinin interacts with B2-bradykinin receptors and stimulates inositol phosphate production in cultured human fibroblasts[1].

   

(2Z)-2-(2,3-dihydropyridin-1-id-6-ylidene)-3,4-dihydropyridin-1-ide;(2Z)-2-piperidin-1-id-2-ylidenepiperidin-1-ide;ruthenium(8+);N-[(2R,3S,5R,6S)-2,3,5,6-tetrafluoro-4-[(2S,3R,5S,6S)-2,3,5,6-tetrafluoro-4-[[(2R,4S)-2-(4-methyl-3,6-dihydro-2H-pyridin-1-id-6-yl)piperidin-1-id-4-yl]methyl]cyclohexyl]cyclohexyl]adamantan-2-amine

(2Z)-2-(2,3-dihydropyridin-1-id-6-ylidene)-3,4-dihydropyridin-1-ide;(2Z)-2-piperidin-1-id-2-ylidenepiperidin-1-ide;ruthenium(8+);N-[(2R,3S,5R,6S)-2,3,5,6-tetrafluoro-4-[(2S,3R,5S,6S)-2,3,5,6-tetrafluoro-4-[[(2R,4S)-2-(4-methyl-3,6-dihydro-2H-pyridin-1-id-6-yl)piperidin-1-id-4-yl]methyl]cyclohexyl]cyclohexyl]adamantan-2-amine

C54H75F8N7Ru+2 (1075.4999286)


   

CDP-DG(PGF2alpha/18:2(9Z,11Z))

CDP-DG(PGF2alpha/18:2(9Z,11Z))

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(PGF2alpha/18:2(9Z,12Z))

CDP-DG(PGF2alpha/18:2(9Z,12Z))

C50H83N3O18P2 (1075.5146598)


   
   
   
   
   

CDP-DG(PGF1alpha/18:3(6Z,9Z,12Z))

CDP-DG(PGF1alpha/18:3(6Z,9Z,12Z))

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(PGF1alpha/18:3(9Z,12Z,15Z))

CDP-DG(PGF1alpha/18:3(9Z,12Z,15Z))

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(i-19:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

CDP-DG(i-19:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C51H87N3O17P2 (1075.5510431999999)


   

CDP-DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-19:0)

CDP-DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-19:0)

C51H87N3O17P2 (1075.5510431999999)


   

CDP-DG(i-19:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

CDP-DG(i-19:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C51H87N3O17P2 (1075.5510431999999)


   

CDP-DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-19:0)

CDP-DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-19:0)

C51H87N3O17P2 (1075.5510431999999)


   

CDP-DG(i-19:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

CDP-DG(i-19:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C51H87N3O17P2 (1075.5510431999999)


   

CDP-DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-19:0)

CDP-DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-19:0)

C51H87N3O17P2 (1075.5510431999999)


   

CDP-DG(18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

CDP-DG(18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:0)

CDP-DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/18:0)

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(18:1(11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

CDP-DG(18:1(11Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(11Z))

CDP-DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(11Z))

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(18:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

CDP-DG(18:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(9Z))

CDP-DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:1(9Z))

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(i-18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

CDP-DG(i-18:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-18:0)

CDP-DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-18:0)

C50H83N3O18P2 (1075.5146598)


   
   
   
   
   
   
   
   
   

CDP-DG(18:2(9Z,11Z)/PGF2alpha)

CDP-DG(18:2(9Z,11Z)/PGF2alpha)

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(18:2(9Z,12Z)/PGF2alpha)

CDP-DG(18:2(9Z,12Z)/PGF2alpha)

C50H83N3O18P2 (1075.5146598)


   
   
   
   
   

CDP-DG(18:3(6Z,9Z,12Z)/PGF1alpha)

CDP-DG(18:3(6Z,9Z,12Z)/PGF1alpha)

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(18:3(9Z,12Z,15Z)/PGF1alpha)

CDP-DG(18:3(9Z,12Z,15Z)/PGF1alpha)

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(20:2(11Z,14Z)/5-iso PGF2VI)

CDP-DG(20:2(11Z,14Z)/5-iso PGF2VI)

C50H83N3O18P2 (1075.5146598)


   

CDP-DG(5-iso PGF2VI/20:2(11Z,14Z))

CDP-DG(5-iso PGF2VI/20:2(11Z,14Z))

C50H83N3O18P2 (1075.5146598)


   

[Hyp(3)]-bradykinin

[Hyp(3)]-bradykinin

C50H73N15O12 (1075.5562857999998)


An oligopeptide that is an analogue of bradykinin in which the third amino acid, proline, is replaced with hydroxyproline.

   

EGFR Protein Tyrosine Kinase Substrate

EGFR Protein Tyrosine Kinase Substrate

C48H73N11O17 (1075.5185648)


EGFR Protein Tyrosine Kinase Substrate is a EGFR protein tyrosine kinase substrate.