Exact Mass: 1072.6572

Exact Mass Matches: 1072.6572

Found 112 metabolites which its exact mass value is equals to given mass value 1072.6572, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

CL(8:0/8:0/8:0/20:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] icosanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/8:0/20:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/8:0/20:0) contains three chains of octanoic acid at the C1, C2 and C3 positions, one chain of eicosanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/8:0/i-20:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] 18-methylnonadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/8:0/i-20:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/8:0/i-20:0) contains three chains of octanoic acid at the C1, C2 and C3 positions, one chain of 18-methylnonadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/10:0/18:0)

[(2R)-1-decanoyloxy-3-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] octadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/10:0/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/10:0/18:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of decanoic acid at the C3 position, one chain of octadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/10:0/i-18:0)

[(2R)-1-decanoyloxy-3-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] 16-methylheptadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/10:0/i-18:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/10:0/i-18:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of decanoic acid at the C3 position, one chain of 16-methylheptadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/11:0/17:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] heptadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/11:0/17:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/11:0/17:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of undecanoic acid at the C3 position, one chain of heptadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/11:0/a-17:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] 14-methylhexadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/11:0/a-17:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/11:0/a-17:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of undecanoic acid at the C3 position, one chain of 14-methylhexadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/11:0/i-17:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] 15-methylhexadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/11:0/i-17:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/11:0/i-17:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of undecanoic acid at the C3 position, one chain of 15-methylhexadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/12:0/16:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] hexadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/12:0/16:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/12:0/16:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of dodecanoic acid at the C3 position, one chain of hexadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/12:0/i-16:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] 14-methylpentadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/12:0/i-16:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/12:0/i-16:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of dodecanoic acid at the C3 position, one chain of 14-methylpentadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/i-12:0/16:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methylundecanoyloxy)propan-2-yl] hexadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/i-12:0/16:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/i-12:0/16:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of 10-methylundecanoic acid at the C3 position, one chain of hexadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/i-12:0/i-16:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methylundecanoyloxy)propan-2-yl] 14-methylpentadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/i-12:0/i-16:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/i-12:0/i-16:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of 10-methylundecanoic acid at the C3 position, one chain of 14-methylpentadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/13:0/15:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] pentadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/13:0/15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/13:0/15:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of tridecanoic acid at the C3 position, one chain of pentadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/13:0/a-15:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] 12-methyltetradecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/13:0/a-15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/13:0/a-15:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of tridecanoic acid at the C3 position, one chain of 12-methyltetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/13:0/i-15:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] 13-methyltetradecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/13:0/i-15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/13:0/i-15:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of tridecanoic acid at the C3 position, one chain of 13-methyltetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/a-13:0/15:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methyldodecanoyloxy)propan-2-yl] pentadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/a-13:0/15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/a-13:0/15:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of 10-methyldodecanoic acid at the C3 position, one chain of pentadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/a-13:0/a-15:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methyldodecanoyloxy)propan-2-yl] 12-methyltetradecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/a-13:0/a-15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/a-13:0/a-15:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of 10-methyldodecanoic acid at the C3 position, one chain of 12-methyltetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/a-13:0/i-15:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methyldodecanoyloxy)propan-2-yl] 13-methyltetradecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/a-13:0/i-15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/a-13:0/i-15:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of 10-methyldodecanoic acid at the C3 position, one chain of 13-methyltetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/i-13:0/15:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-(11-methyldodecanoyloxy)propan-2-yl] pentadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/i-13:0/15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/i-13:0/15:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of 11-methyldodecanoic acid at the C3 position, one chain of pentadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/i-13:0/a-15:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-(11-methyldodecanoyloxy)propan-2-yl] 12-methyltetradecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/i-13:0/a-15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/i-13:0/a-15:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of 11-methyldodecanoic acid at the C3 position, one chain of 12-methyltetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/i-13:0/i-15:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-(11-methyldodecanoyloxy)propan-2-yl] 13-methyltetradecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/i-13:0/i-15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/i-13:0/i-15:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of 11-methyldodecanoic acid at the C3 position, one chain of 13-methyltetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/14:0/14:0)

[(2R)-3-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] tetradecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/14:0/14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/14:0/14:0) contains two chains of octanoic acid at the C1 and C2 positions, two chains of tetradecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/14:0/i-14:0)

[(2S)-3-({[(2R)-2,3-bis(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(12-methyltridecanoyl)oxy]-3-(tetradecanoyloxy)propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/8:0/14:0/i-14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/14:0/i-14:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of tetradecanoic acid at the C3 position, one chain of 12-methyltridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/i-14:0/i-14:0)

[(2R)-3-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-(12-methyltridecanoyloxy)propyl] 12-methyltridecanoate

C53H102O17P2 (1072.6592)


CL(8:0/8:0/i-14:0/i-14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/i-14:0/i-14:0) contains two chains of octanoic acid at the C1 and C2 positions, two chains of 12-methyltridecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/10:0/16:0)

[(2R)-1-decanoyloxy-3-[[(2S)-3-[[(2R)-2-decanoyloxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] hexadecanoate

C53H102O17P2 (1072.6592)


CL(8:0/10:0/10:0/16:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/10:0/16:0) contains one chain of octanoic acid at the C1 position, two chains of decanoic acid at the C2 and C3 positions, one chain of hexadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/10:0/i-16:0)

[(2R)-3-(decanoyloxy)-2-[(14-methylpentadecanoyl)oxy]propoxy][(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/10:0/10:0/i-16:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/10:0/i-16:0) contains one chain of octanoic acid at the C1 position, two chains of decanoic acid at the C2 and C3 positions, one chain of 14-methylpentadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/11:0/15:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-(pentadecanoyloxy)-3-(undecanoyloxy)propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/10:0/11:0/15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/11:0/15:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of undecanoic acid at the C3 position, one chain of pentadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/11:0/a-15:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(12-methyltetradecanoyl)oxy]-3-(undecanoyloxy)propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/10:0/11:0/a-15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/11:0/a-15:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of undecanoic acid at the C3 position, one chain of 12-methyltetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/11:0/i-15:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(13-methyltetradecanoyl)oxy]-3-(undecanoyloxy)propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/10:0/11:0/i-15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/11:0/i-15:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of undecanoic acid at the C3 position, one chain of 13-methyltetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/12:0/14:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-3-(dodecanoyloxy)-2-(tetradecanoyloxy)propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/10:0/12:0/14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/12:0/14:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of dodecanoic acid at the C3 position, one chain of tetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/12:0/i-14:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-3-(dodecanoyloxy)-2-[(12-methyltridecanoyl)oxy]propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/10:0/12:0/i-14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/12:0/i-14:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of dodecanoic acid at the C3 position, one chain of 12-methyltridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/i-12:0/14:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-3-[(10-methylundecanoyl)oxy]-2-(tetradecanoyloxy)propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/10:0/i-12:0/14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/i-12:0/14:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of 10-methylundecanoic acid at the C3 position, one chain of tetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/i-12:0/i-14:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(12-methyltridecanoyl)oxy]-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/10:0/i-12:0/i-14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/i-12:0/i-14:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of 10-methylundecanoic acid at the C3 position, one chain of 12-methyltridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/13:0/13:0)

[(2R)-3-[[(2S)-3-[[(2R)-2-decanoyloxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] tridecanoate

C53H102O17P2 (1072.6592)


CL(8:0/10:0/13:0/13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/13:0/13:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, two chains of tridecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/13:0/a-13:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(10-methyldodecanoyl)oxy]-3-(tridecanoyloxy)propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/10:0/13:0/a-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/13:0/a-13:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of tridecanoic acid at the C3 position, one chain of 10-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/13:0/i-13:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(11-methyldodecanoyl)oxy]-3-(tridecanoyloxy)propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/10:0/13:0/i-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/13:0/i-13:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of tridecanoic acid at the C3 position, one chain of 11-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/a-13:0/a-13:0)

[(2R)-3-[[(2S)-3-[[(2R)-2-decanoyloxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-(10-methyldodecanoyloxy)propyl] 10-methyldodecanoate

C53H102O17P2 (1072.6592)


CL(8:0/10:0/a-13:0/a-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/a-13:0/a-13:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, two chains of 10-methyldodecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/a-13:0/i-13:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-3-[(10-methyldodecanoyl)oxy]-2-[(11-methyldodecanoyl)oxy]propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/10:0/a-13:0/i-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/a-13:0/i-13:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of 10-methyldodecanoic acid at the C3 position, one chain of 11-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/i-13:0/i-13:0)

[(2R)-3-[[(2S)-3-[[(2R)-2-decanoyloxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-(11-methyldodecanoyloxy)propyl] 11-methyldodecanoate

C53H102O17P2 (1072.6592)


CL(8:0/10:0/i-13:0/i-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/i-13:0/i-13:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, two chains of 11-methyldodecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/11:0/11:0/14:0)

[(2R)-1-[hydroxy-[(2S)-2-hydroxy-3-[hydroxy-[(2R)-3-octanoyloxy-2-undecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxy-3-undecanoyloxypropan-2-yl] tetradecanoate

C53H102O17P2 (1072.6592)


CL(8:0/11:0/11:0/14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/11:0/11:0/14:0) contains one chain of octanoic acid at the C1 position, two chains of undecanoic acid at the C2 and C3 positions, one chain of tetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/11:0/11:0/i-14:0)

[(2R)-1-[hydroxy-[(2S)-2-hydroxy-3-[hydroxy-[(2R)-3-octanoyloxy-2-undecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxy-3-undecanoyloxypropan-2-yl] 12-methyltridecanoate

C53H102O17P2 (1072.6592)


CL(8:0/11:0/11:0/i-14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/11:0/11:0/i-14:0) contains one chain of octanoic acid at the C1 position, two chains of undecanoic acid at the C2 and C3 positions, one chain of 12-methyltridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/11:0/12:0/13:0)

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(2S)-2-hydroxy-3-[hydroxy-[(2R)-3-octanoyloxy-2-undecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropan-2-yl] tridecanoate

C53H102O17P2 (1072.6592)


CL(8:0/11:0/12:0/13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/11:0/12:0/13:0) contains one chain of octanoic acid at the C1 position, one chain of undecanoic acid at the C2 position, one chain of dodecanoic acid at the C3 position, one chain of tridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/11:0/12:0/a-13:0)

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(2S)-2-hydroxy-3-[hydroxy-[(2R)-3-octanoyloxy-2-undecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropan-2-yl] 10-methyldodecanoate

C53H102O17P2 (1072.6592)


CL(8:0/11:0/12:0/a-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/11:0/12:0/a-13:0) contains one chain of octanoic acid at the C1 position, one chain of undecanoic acid at the C2 position, one chain of dodecanoic acid at the C3 position, one chain of 10-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/11:0/12:0/i-13:0)

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(2S)-2-hydroxy-3-[hydroxy-[(2R)-3-octanoyloxy-2-undecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropan-2-yl] 11-methyldodecanoate

C53H102O17P2 (1072.6592)


CL(8:0/11:0/12:0/i-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/11:0/12:0/i-13:0) contains one chain of octanoic acid at the C1 position, one chain of undecanoic acid at the C2 position, one chain of dodecanoic acid at the C3 position, one chain of 11-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/11:0/i-12:0/13:0)

[(2R)-1-[hydroxy-[(2S)-2-hydroxy-3-[hydroxy-[(2R)-3-octanoyloxy-2-undecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxy-3-(10-methylundecanoyloxy)propan-2-yl] tridecanoate

C53H102O17P2 (1072.6592)


CL(8:0/11:0/i-12:0/13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/11:0/i-12:0/13:0) contains one chain of octanoic acid at the C1 position, one chain of undecanoic acid at the C2 position, one chain of 10-methylundecanoic acid at the C3 position, one chain of tridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/11:0/i-12:0/a-13:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-(octanoyloxy)-2-(undecanoyloxy)propoxy]phosphoryl}oxy)propoxy][(2R)-2-[(10-methyldodecanoyl)oxy]-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/11:0/i-12:0/a-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/11:0/i-12:0/a-13:0) contains one chain of octanoic acid at the C1 position, one chain of undecanoic acid at the C2 position, one chain of 10-methylundecanoic acid at the C3 position, one chain of 10-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/11:0/i-12:0/i-13:0)

[(2R)-1-[hydroxy-[(2S)-2-hydroxy-3-[hydroxy-[(2R)-3-octanoyloxy-2-undecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxy-3-(10-methylundecanoyloxy)propan-2-yl] 11-methyldodecanoate

C53H102O17P2 (1072.6592)


CL(8:0/11:0/i-12:0/i-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/11:0/i-12:0/i-13:0) contains one chain of octanoic acid at the C1 position, one chain of undecanoic acid at the C2 position, one chain of 10-methylundecanoic acid at the C3 position, one chain of 11-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/12:0/12:0/12:0)

[(2R)-2-dodecanoyloxy-3-[[(2S)-3-[[(2R)-2-dodecanoyloxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropyl] dodecanoate

C53H102O17P2 (1072.6592)


CL(8:0/12:0/12:0/12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/12:0/12:0/12:0) contains one chain of octanoic acid at the C1 position, three chains of dodecanoic acid at the C2, C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/12:0/12:0/i-12:0)

[(2R)-3-(dodecanoyloxy)-2-[(10-methylundecanoyl)oxy]propoxy][(2S)-3-({[(2R)-2-(dodecanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/12:0/12:0/i-12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/12:0/12:0/i-12:0) contains one chain of octanoic acid at the C1 position, two chains of dodecanoic acid at the C2 and C3 positions, one chain of 10-methylundecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/12:0/i-12:0/i-12:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-bis(10-methylundecanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] dodecanoate

C53H102O17P2 (1072.6592)


CL(8:0/12:0/i-12:0/i-12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/12:0/i-12:0/i-12:0) contains one chain of octanoic acid at the C1 position, one chain of dodecanoic acid at the C2 position, two chains of 10-methylundecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/i-12:0/i-12:0/i-12:0)

[(2R)-2,3-bis[(10-methylundecanoyl)oxy]propoxy][(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(10-methylundecanoyl)oxy]-3-(octanoyloxy)propoxy]phosphoryl}oxy)propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(8:0/i-12:0/i-12:0/i-12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/i-12:0/i-12:0/i-12:0) contains one chain of octanoic acid at the C1 position, three chains of 10-methylundecanoic acid at the C2, C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/10:0/10:0/14:0)

[(2R)-1-decanoyloxy-3-[[(2S)-3-[[(2R)-2,3-di(decanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] tetradecanoate

C53H102O17P2 (1072.6592)


CL(10:0/10:0/10:0/14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/10:0/10:0/14:0) contains three chains of decanoic acid at the C1, C2 and C3 positions, one chain of tetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/10:0/10:0/i-14:0)

[(2R)-1-decanoyloxy-3-[[(2S)-3-[[(2R)-2,3-di(decanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] 12-methyltridecanoate

C53H102O17P2 (1072.6592)


CL(10:0/10:0/10:0/i-14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/10:0/10:0/i-14:0) contains three chains of decanoic acid at the C1, C2 and C3 positions, one chain of 12-methyltridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/10:0/11:0/13:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(decanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] tridecanoate

C53H102O17P2 (1072.6592)


CL(10:0/10:0/11:0/13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/10:0/11:0/13:0) contains two chains of decanoic acid at the C1 and C2 positions, one chain of undecanoic acid at the C3 position, one chain of tridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/10:0/11:0/a-13:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(decanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] 10-methyldodecanoate

C53H102O17P2 (1072.6592)


CL(10:0/10:0/11:0/a-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/10:0/11:0/a-13:0) contains two chains of decanoic acid at the C1 and C2 positions, one chain of undecanoic acid at the C3 position, one chain of 10-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/10:0/11:0/i-13:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(decanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] 11-methyldodecanoate

C53H102O17P2 (1072.6592)


CL(10:0/10:0/11:0/i-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/10:0/11:0/i-13:0) contains two chains of decanoic acid at the C1 and C2 positions, one chain of undecanoic acid at the C3 position, one chain of 11-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/10:0/12:0/12:0)

[(2R)-3-[[(2S)-3-[[(2R)-2,3-di(decanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] dodecanoate

C53H102O17P2 (1072.6592)


CL(10:0/10:0/12:0/12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/10:0/12:0/12:0) contains two chains of decanoic acid at the C1 and C2 positions, two chains of dodecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/10:0/12:0/i-12:0)

[(2S)-3-({[(2R)-2,3-bis(decanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-3-(dodecanoyloxy)-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(10:0/10:0/12:0/i-12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/10:0/12:0/i-12:0) contains two chains of decanoic acid at the C1 and C2 positions, one chain of dodecanoic acid at the C3 position, one chain of 10-methylundecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/10:0/i-12:0/i-12:0)

[(2R)-3-[[(2S)-3-[[(2R)-2,3-di(decanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-(10-methylundecanoyloxy)propyl] 10-methylundecanoate

C53H102O17P2 (1072.6592)


CL(10:0/10:0/i-12:0/i-12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/10:0/i-12:0/i-12:0) contains two chains of decanoic acid at the C1 and C2 positions, two chains of 10-methylundecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/11:0/11:0/12:0)

[(2S)-3-({[(2R)-3-(decanoyloxy)-2-(undecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-(dodecanoyloxy)-3-(undecanoyloxy)propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(10:0/11:0/11:0/12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/11:0/11:0/12:0) contains one chain of decanoic acid at the C1 position, two chains of undecanoic acid at the C2 and C3 positions, one chain of dodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/11:0/11:0/i-12:0)

[(2S)-3-({[(2R)-3-(decanoyloxy)-2-(undecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(10-methylundecanoyl)oxy]-3-(undecanoyloxy)propoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(10:0/11:0/11:0/i-12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/11:0/11:0/i-12:0) contains one chain of decanoic acid at the C1 position, two chains of undecanoic acid at the C2 and C3 positions, one chain of 10-methylundecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(11:0/11:0/11:0/11:0)

[(2R)-2,3-bis(undecanoyloxy)propoxy][3-({[(2R)-2,3-bis(undecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphinic acid

C53H102O17P2 (1072.6592)


CL(11:0/11:0/11:0/11:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(11:0/11:0/11:0/11:0) contains four chains of undecanoic acid at the C1, C2, C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   
   

12,21,27-tris-(2-amino-ethyl)-18-benzyl-24,30-di-sec-butyl-3-hydroxymethyl-6,15-diisobutyl-9-isopropyl-1-oxa-4,7,10,13,16,19,22,25,28-nonaaza-cyclotriacontane-2,5,11,14,17,20,23,26,29-nonaone|Permetin A * HCl

12,21,27-tris-(2-amino-ethyl)-18-benzyl-24,30-di-sec-butyl-3-hydroxymethyl-6,15-diisobutyl-9-isopropyl-1-oxa-4,7,10,13,16,19,22,25,28-nonaaza-cyclotriacontane-2,5,11,14,17,20,23,26,29-nonaone|Permetin A * HCl

C53H92N12O11 (1072.7008)


   

[(2R)-1-[[(2S)-3-[[(2R)-3-decanoyloxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] dodecanoate

[(2R)-1-[[(2S)-3-[[(2R)-3-decanoyloxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] dodecanoate

C53H102O17P2 (1072.6592)


   

[(2R)-1-[[(2S)-3-[[(2R)-3-decanoyloxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] 10-methylundecanoate

[(2R)-1-[[(2S)-3-[[(2R)-3-decanoyloxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] 10-methylundecanoate

C53H102O17P2 (1072.6592)


   

[(2R)-3-[[3-[[(2R)-2,3-di(undecanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] undecanoate

[(2R)-3-[[3-[[(2R)-2,3-di(undecanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] undecanoate

C53H102O17P2 (1072.6592)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

C61H100O15 (1072.7062)


   

[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C61H100O15 (1072.7062)


   

[1-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C61H100O15 (1072.7062)


   

[1-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C64H97O11P (1072.6768)


   

[1-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C64H97O11P (1072.6768)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C64H97O11P (1072.6768)


   

[1-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C64H97O11P (1072.6768)


   

[3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C64H97O11P (1072.6768)


   

[3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C64H97O11P (1072.6768)


   

[3-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C64H97O11P (1072.6768)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C64H97O11P (1072.6768)


   

[1-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C64H97O11P (1072.6768)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-[3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-[3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C64H97O11P (1072.6768)


   

[3-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[3-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C64H97O11P (1072.6768)


   

[3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C64H97O11P (1072.6768)


   

[3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C64H97O11P (1072.6768)


   

[1-hydroxy-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-hydroxy-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C64H97O11P (1072.6768)


   

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C64H97O11P (1072.6768)


   

[1-hydroxy-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-hydroxy-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C64H97O11P (1072.6768)


   

[3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C64H97O11P (1072.6768)


   

[1-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C64H97O11P (1072.6768)


   

[3-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[3-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C64H97O11P (1072.6768)


   

[1-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C64H97O11P (1072.6768)


   

[1-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C64H97O11P (1072.6768)


   

[3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C64H97O11P (1072.6768)


   

[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C64H97O11P (1072.6768)


   

[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C64H97O11P (1072.6768)


   

[(2S)-1-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2S)-1-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-[[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C61H100O15 (1072.7062)


   

[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C61H100O15 (1072.7062)


   
   
   
   
   
   
   
   
   

CerG2GNAc1(35:4)

CerG2GNAc1(d15:0_20:4)

C55H96N2O18 (1072.6658)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

(3s,6s,12s,15s,18s,21e,23e,26s,27r,30r,31r,34s)-18-[(2s)-butan-2-yl]-31-[(4s)-4-hydroxy-5-methylhexyl]-3,15-diisopropyl-22-methoxy-12-(methoxymethyl)-4,13,16,19,23,26,27,30-octamethyl-28,32-dioxa-1,4,10,13,16,19-hexaazatricyclo[32.3.0.0⁶,¹⁰]heptatriaconta-21,23-dien-2,5,11,14,17,20,29,33-octone

(3s,6s,12s,15s,18s,21e,23e,26s,27r,30r,31r,34s)-18-[(2s)-butan-2-yl]-31-[(4s)-4-hydroxy-5-methylhexyl]-3,15-diisopropyl-22-methoxy-12-(methoxymethyl)-4,13,16,19,23,26,27,30-octamethyl-28,32-dioxa-1,4,10,13,16,19-hexaazatricyclo[32.3.0.0⁶,¹⁰]heptatriaconta-21,23-dien-2,5,11,14,17,20,29,33-octone

C57H96N6O13 (1072.7035)


   

12,21,27-tris(2-aminoethyl)-18-benzyl-5,8,11,14,17,20,23,26,29-nonahydroxy-3-(hydroxymethyl)-9,24,31-triisopropyl-6,15-bis(2-methylpropyl)-1-oxa-4,7,10,13,16,19,22,25,28-nonaazacyclohentriaconta-4,7,10,13,16,19,22,25,28-nonaen-2-one

12,21,27-tris(2-aminoethyl)-18-benzyl-5,8,11,14,17,20,23,26,29-nonahydroxy-3-(hydroxymethyl)-9,24,31-triisopropyl-6,15-bis(2-methylpropyl)-1-oxa-4,7,10,13,16,19,22,25,28-nonaazacyclohentriaconta-4,7,10,13,16,19,22,25,28-nonaen-2-one

C52H88N12O12 (1072.6644)


   

21-benzyl-1,7,16,19-tetrahydroxy-24-[hydroxy(phenyl)methyl]-3,12,15,18-tetraisopropyl-5,11,23-trimethyl-9-(2-methylpropyl)-6-(sec-butyl)-3h,6h,9h,12h,15h,18h,21h,24h,27h,28h,29h,29ah-pyrrolo[1,2-m]1-oxa-4,7,10,13,16,19,22,25-octaazacycloheptacosane-4,10,13,22,25-pentone

21-benzyl-1,7,16,19-tetrahydroxy-24-[hydroxy(phenyl)methyl]-3,12,15,18-tetraisopropyl-5,11,23-trimethyl-9-(2-methylpropyl)-6-(sec-butyl)-3h,6h,9h,12h,15h,18h,21h,24h,27h,28h,29h,29ah-pyrrolo[1,2-m]1-oxa-4,7,10,13,16,19,22,25-octaazacycloheptacosane-4,10,13,22,25-pentone

C58H88N8O11 (1072.6572)


   

(3s,6s,12s,15s,18s,21e,23e,26s,27r,30r,31r,35s,38s)-18-[(2s)-butan-2-yl]-31-hydroxy-3,15,35-triisopropyl-22-methoxy-12-(methoxymethyl)-4,13,16,19,23,26,27,30-octamethyl-28,36-dioxa-1,4,10,13,16,19-hexaazatricyclo[36.3.0.0⁶,¹⁰]hentetraconta-21,23-dien-2,5,11,14,17,20,29,37-octone

(3s,6s,12s,15s,18s,21e,23e,26s,27r,30r,31r,35s,38s)-18-[(2s)-butan-2-yl]-31-hydroxy-3,15,35-triisopropyl-22-methoxy-12-(methoxymethyl)-4,13,16,19,23,26,27,30-octamethyl-28,36-dioxa-1,4,10,13,16,19-hexaazatricyclo[36.3.0.0⁶,¹⁰]hentetraconta-21,23-dien-2,5,11,14,17,20,29,37-octone

C57H96N6O13 (1072.7035)


   

(3s,6s,9s,12s,15s,18s,21s,24s)-21,24-dibenzyl-1,7,19-trihydroxy-12-(2-hydroxypropan-2-yl)-3,6,15,18-tetraisopropyl-5,11,17,23-tetramethyl-9-(2-methylpropyl)-3h,6h,9h,12h,15h,18h,21h,24h,27h,28h,29h,29ah-pyrrolo[1,2-m]1-oxa-4,7,10,13,16,19,22,25-octaazacycloheptacosane-4,10,13,16,22,25-hexone

(3s,6s,9s,12s,15s,18s,21s,24s)-21,24-dibenzyl-1,7,19-trihydroxy-12-(2-hydroxypropan-2-yl)-3,6,15,18-tetraisopropyl-5,11,17,23-tetramethyl-9-(2-methylpropyl)-3h,6h,9h,12h,15h,18h,21h,24h,27h,28h,29h,29ah-pyrrolo[1,2-m]1-oxa-4,7,10,13,16,19,22,25-octaazacycloheptacosane-4,10,13,16,22,25-hexone

C58H88N8O11 (1072.6572)


   

(23e)-31-(4-hydroxy-5-methylhexyl)-3,15-diisopropyl-22-methoxy-12-(methoxymethyl)-4,13,16,19,23,26,27,30-octamethyl-18-(sec-butyl)-28,32-dioxa-1,4,10,13,16,19-hexaazatricyclo[32.3.0.0⁶,¹⁰]heptatriaconta-21,23-dien-2,5,11,14,17,20,29,33-octone

(23e)-31-(4-hydroxy-5-methylhexyl)-3,15-diisopropyl-22-methoxy-12-(methoxymethyl)-4,13,16,19,23,26,27,30-octamethyl-18-(sec-butyl)-28,32-dioxa-1,4,10,13,16,19-hexaazatricyclo[32.3.0.0⁶,¹⁰]heptatriaconta-21,23-dien-2,5,11,14,17,20,29,33-octone

C57H96N6O13 (1072.7035)


   

(23e)-31-hydroxy-3,15,35-triisopropyl-22-methoxy-12-(methoxymethyl)-4,13,16,19,23,26,27,30-octamethyl-18-(sec-butyl)-28,36-dioxa-1,4,10,13,16,19-hexaazatricyclo[36.3.0.0⁶,¹⁰]hentetraconta-21,23-dien-2,5,11,14,17,20,29,37-octone

(23e)-31-hydroxy-3,15,35-triisopropyl-22-methoxy-12-(methoxymethyl)-4,13,16,19,23,26,27,30-octamethyl-18-(sec-butyl)-28,36-dioxa-1,4,10,13,16,19-hexaazatricyclo[36.3.0.0⁶,¹⁰]hentetraconta-21,23-dien-2,5,11,14,17,20,29,37-octone

C57H96N6O13 (1072.7035)