Exact Mass: 1062.5763
Exact Mass Matches: 1062.5763
Found 133 metabolites which its exact mass value is equals to given mass value 1062.5763
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Yamogenintetroside B
Methylprotodioscin is a steroid saponin. Methylprotodioscin is a natural product found in Dracaena draco, Smilax menispermoidea, and other organisms with data available. Methylprotodioscin is found in herbs and spices. Methylprotodioscin is isolated from seeds of Trigonella caerulea (sweet trefoil) and Asparagus officinalis (asparagus). Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2]. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2].
Hoduloside IX
Hoduloside IX is a constituent of Hovenia dulcis (raisin tree).
PIP(22:3(10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
PIP(22:3(10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:3(10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.
PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:3(10Z,13Z,16Z))
PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of Leukotriene B4 at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.
PIP(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
PIP(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.
PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:3(10Z,13Z,16Z))
PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.
PIP(22:3(10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
PIP(22:3(10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:3(10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.
PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:3(10Z,13Z,16Z))
PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.
Cellotetraosylsitosterol
Cellotetraosylsitosterol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cellotetraosylsitosterol can be found in rice, which makes cellotetraosylsitosterol a potential biomarker for the consumption of this food product.
Smilax saponin B
Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2]. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2].
(3beta,20S)-3,20,21-trihydroxydammar-24-ene 3-O-{[alpha-L-rhamnopyranosyl-(1-2)]-[beta-D-xylopyranosyl-(1-3)]-beta-D-glucopyranosyl}-21-O-beta-D-glucopyranoside|3beta,20S,21-trihydroxydammar-24-ene 3-O-{[alpha-L-rhamnopyranosyl(1->2)][beta-D-xylopyranosyl(1->3)]-beta-D-glucopyranosyl}-21-O-beta-D-glucopyranoside
3beta,20S,21-trihydroxy-25-methoxydammar-23(E)-ene 3-O-alpha-L-rhamnopyranosyl(1->2)-[beta-D-xylopyranosyl(1->3)]-beta-D-glucopyranosyl-21-O-beta-D-xylopyranoside
12-O-benzoyllineolon 3-O-beta-D-glucopyranosyl-(1->4)-O-beta-D-diginopyranosyl-(1->4)-O-beta-D-cymaropyranosyl-(1->4)-beta-D-cymaropyranoside|amurensioside B
19-oxo-3beta,20S,21,24S-tetrahydroxydammar-25-ene 3-O-{[alpha-L-rhamnopyranosyl(1->2)][beta-D-xylopyranosyl(1->3)]-alpha-L-arabinopyranosyl}-21-O-beta-D-glucopyranoside
(3beta,12beta,14beta,17alpha)-3-{[2,6-dideoxy-3-O-methyl-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-alpha-L-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-beta-D-arabino-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl]oxy}-8,14,17-trihydroxy-20-oxopregn-5-en-12-yl 4-hydroxybenzoate|3-O-beta-D-cymaropyranosyl-(1->4)-alpha-L-cymaropyranosyl-(1->4)-beta-D-oleandropyranosyl-(1->4)-beta-D-digitoxopyranosyl qingyangshengenin|wilfoside D
3beta-O-(beta-D-xylopyranosyl-(1?2)-beta-D-glucopyranosyl-(1?4)-[beta-D-glucopyranosyl-(1?2)]-alpha-L-arabinopyranosyl)-camelliagenin A
3-O-{beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranosyl-(1->4)-[beta-D-glucopyranosyl-(1->2)]-alpha-L-arabinopyranosyl}-3beta,16beta-12-oleanene-3,16,23,28-tetrol|heterogenoside D
3-O-alpha-L-rhamnopyranosyl-(1->2)-O-[alpha-L-rhamnopyranosyl-(1->4)]-beta-D-glucopyranosyl-22S,25R-furost-5-ene-16alpha-methoxy-3beta,26-diol 26-O-beta-D-glucopyranoside|solaviaside B
anagalligenin B 3-O-{beta-D-xylopyranosyl(1?2)-beta-D-glucopyranosyl(1?4)[beta-D-glucopyranosyl (1?2)]-alpha-L-arabinopyranoside}|anagallisin C|anagalloside B|desgluconagalloside B
(3beta,22R,25R)-26-(beta-D-glucopyranosyloxy)-22-methoxyfurost-5-en-3-yl 6-deoxy-alpha-L-mannopyranosyl-(1->2)-[6-deoxy-alpha-L-mannopyranosyl-(1->3)]-beta-D-glucopyranoside|Methyl proto-taccaoside
3beta,20S,21-trihydroxydammar-24-ene 3-O-{[alpha-L-rhamnopyranosyl(1->2)][beta-D-glucopyranosyl(1->3)]-alpha-L-arabinopyranosyl}-21-O-beta-D-glucopyranoside
3-O-[alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranosyl-(1->2)-beta-D-xylopyranosyl]-6-O-beta-D-glucopyranosyl-3beta,6alpha,16beta,24alpha-tetrahydroxy-20(R),25-epoxycycloartane|3-O-[alpha-L-rhamnopyranosyl-(1->2)-O-alpha-L-arabinopyranosyl-(1->2)-O-beta-D-xylopyranosyl]-6-O-beta-D-glucopyranosyl-3beta,6alpha,16beta,24alpha-tetrahydroxy-20(R),25-epoxycycloartane
C52H86O22_alpha-L-Arabinopyranoside, (3beta,5xi,9xi,16alpha)-13,28-epoxy-16,23-dihydroxyoleanan-3-yl O-beta-D-glucopyranosyl-(1->2)-O-[O-beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranosyl-(1->4)]
methyl protodioscin
Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2]. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2].
Gypenoside S4
PIP(22:3(10Z,13Z,16Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/22:3(10Z,13Z,16Z))
PIP(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/22:3(10Z,13Z,16Z))
PIP(22:3(10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/22:3(10Z,13Z,16Z))
MPD cpd
Methylprotodioscin is a steroid saponin. Methylprotodioscin is a natural product found in Dracaena draco, Smilax menispermoidea, and other organisms with data available. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2]. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2].
Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg
An oligopeptide comprising of L-threonine, L-proline, L-proline, L-alanine, glycine, L-proline, L-aspartic acid, L-valine, glycine, L-proline, and L-arginine amino acids joined in sequence by peptide linkages. It is isolated from the venoms of three species of New World pit vipers from the subfamily, Crotalinae.
Acyl Carrier Protein (ACP) (65-74)
Acyl Carrier Protein (ACP) (65-74) is an active acyl carrier protein (ACP) fragment[1].
(1s,3ar,3bs,7s,9ar,9br,11r,11as)-1-acetyl-1,3a,3b-trihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5r,6r)-5-{[(2s,4r,5s,6s)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl 4-hydroxybenzoate
(2s,3r,4s,5r,6r)-2-{[(2r,3r,4r,5r,6r)-6-{[(1r,3r,3ar,5as,7s,9as,9br,11ar)-3-hydroxy-1-[(2r,5e)-7-hydroxy-5-isopropylhept-5-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-{[(2s,3s,4r,5r)-4,5-dihydroxy-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4s,5s,6r)-2-[(2s)-4-[(1s,2s,4s,6r,7s,8r,9s,12s,13r,16s)-16-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
2-{4-[16-({3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl}oxy)-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl]-2-methylbutoxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,3r,4s,5s,6r)-2-[(2s)-4-[(1s,2s,4s,6r,7s,8r,9s,12s,13r,16s)-16-{[(2r,3r,4s,5s,6r)-4-hydroxy-6-(hydroxymethyl)-3,5-bis({[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl]-2-methylbutoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
2-{4-[(1r,2r,4r,6r,8s,9s,12r,13r)-16-{[(2s)-4-hydroxy-6-(hydroxymethyl)-3,5-bis({[(2r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}-6-methoxy-7,9,13-trimethyl-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-6-yl]-2-methylbutoxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1s,3as,3br,5ar,7s,9ar,9br,11ar)-7-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s,4e)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-3b,6,6,9a-tetramethyl-3a-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)-dodecahydrocyclopenta[a]phenanthren-2-one
2-{[4-hydroxy-2-(hydroxymethyl)-6-{[4-methoxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(10r,12s)-10,12-dimethyl-n-[(3s,6s,9s,11r,15s,18r,20r,21r,24s,25s,26s)-5,8,11,17,20,21,23,25-octahydroxy-6-[(2r)-2-hydroxy-2-(4-hydroxyphenyl)ethyl]-3-[(1r)-1-hydroxy-2-(c-hydroxycarbonimidoyl)ethyl]-15-[(1r)-1-hydroxyethyl]-26-methyl-2,14-dioxo-1,4,7,13,16,22-hexaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,22-tetraen-18-yl]tetradecanimidic acid
(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-2-(hydroxymethyl)-6-{[(1s,2s,4s,6s,7s,8r,9s,12s,13r,16s)-4-methoxy-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5r,6r)-2-{[(3s,4s,5r,6s)-6-{[(1s,2r,4s,5r,8r,10s,13s,14r,17s,18r,20s)-2,20-dihydroxy-4,5,9,9,13,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosan-10-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4-hydroxy-2-{[(1s,2r,4s,5r,8r,9r,10s,13r,14r,17s,18r)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosan-10-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
19-oxo-3β,20s,21,24s-tetrahydroxydammar-25-ene 3-o-{[α-l-rhamnopyranosyl(1→2)][β-d-xylopyranosyl(1→3)]-α-l-arabinopyranosyl}-21-o-β-d-glucopyranoside
{"Ingredient_id": "HBIN002207","Ingredient_name": "19-oxo-3\u03b2,20s,21,24s-tetrahydroxydammar-25-ene 3-o-{[\u03b1-l-rhamnopyranosyl(1\u21922)][\u03b2-d-xylopyranosyl(1\u21923)]-\u03b1-l-arabinopyranosyl}-21-o-\u03b2-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C52H86O22","Ingredient_Smile": "CC1C(C(C(C(O1)OC2C(C(COC2OC3CCC4(C5CCC6C(CCC6(C5(CCC4C3(C)C)C)C)C(CCC(C(=C)C)O)(COC7C(C(C(C(O7)CO)O)O)O)O)C=O)O)OC8C(C(C(CO8)O)O)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "16417","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
22-o-methylprotodioscin
{"Ingredient_id": "HBIN003749","Ingredient_name": "22-o-methylprotodioscin","Alias": "NA","Ingredient_formula": "C52H86O22","Ingredient_Smile": "CC1C2C(CC3C2(CCC4C3CC=C5C4(CCC(C5)OC6C(C(C(C(O6)CO)OC7C(C(C(C(O7)C)O)O)O)O)OC8C(C(C(C(O8)C)O)O)O)C)C)OC1(CCC(C)COC9C(C(C(C(O9)CO)O)O)O)OC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "14690","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3β,20s,21-trihydroxydammar-24-ene 3-o-{[α-l-rhamnopyranosyl(1→2)][β-d-xylopyranosyl(1→3)]-β-d-glucopyranosyl}-21-o-β-d-glu-copyranoside
{"Ingredient_id": "HBIN008054","Ingredient_name": "3\u03b2,20s,21-trihydroxydammar-24-ene 3-o-{[\u03b1-l-rhamnopyranosyl(1\u21922)][\u03b2-d-xylopyranosyl(1\u21923)]-\u03b2-d-glucopyranosyl}-21-o-\u03b2-d-glu-copyranoside","Alias": "NA","Ingredient_formula": "C53H90O21","Ingredient_Smile": "CC1C(C(C(C(O1)OC2C(C(C(OC2OC3CCC4(C5CCC6C(CCC6(C5(CCC4C3(C)C)C)C)C(CCC=C(C)C)(COC7C(C(C(C(O7)CO)O)O)O)O)C)CO)O)OC8C(C(C(CO8)O)O)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "21686","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
ardisianoside G
{"Ingredient_id": "HBIN016655","Ingredient_name": "ardisianoside G","Alias": "NA","Ingredient_formula": "C52H86O22","Ingredient_Smile": "CC1C(C(C(C(O1)OC2C(C(C(OC2OC3COC(C(C3O)OC4C(C(C(C(O4)CO)O)O)O)OC5CCC6(C(C5(C)C)CCC7(C6CCC89C7(CC(C1(C8CC(CC1)(C)O)CO9)O)C)C)C)CO)O)O)O)O)O","Ingredient_weight": "1063.23","OB_score": "5.618404458","CAS_id": "932018-33-2","SymMap_id": "SMIT11987","TCMID_id": "NA","TCMSP_id": "MOL011030","TCM_ID_id": "NA","PubChem_id": "16109776","DrugBank_id": "NA"}
ardisianoside G_qt
{"Ingredient_id": "HBIN016656","Ingredient_name": "ardisianoside G_qt","Alias": "NA","Ingredient_formula": "C52H86O22","Ingredient_Smile": "NA","Ingredient_weight": "1063.23","OB_score": "16.96563034","CAS_id": "932018-33-2","SymMap_id": "SMIT11988","TCMID_id": "NA","TCMSP_id": "MOL011031","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
ardisicrenoside B
{"Ingredient_id": "HBIN016672","Ingredient_name": "ardisicrenoside B","Alias": "NA","Ingredient_formula": "C52H86O22","Ingredient_Smile": "CC1(C2CCC3(C(C2(CCC1OC4C(C(C(CO4)OC5C(C(C(C(O5)CO)O)O)OC6C(C(C(CO6)O)O)O)O)OC7C(C(C(C(O7)CO)O)O)O)C)CCC89C3(CC(C1(C8CC(CC1)(C)CO)CO9)O)C)C)C","Ingredient_weight": "1063.2 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "41088","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "10373894","DrugBank_id": "NA"}