Exact Mass: 1039.5715

Exact Mass Matches: 1039.5715

Found 30 metabolites which its exact mass value is equals to given mass value 1039.5715, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Ornithokinin

(2S)-2-[(Z)-[(2S)-2-[(Z)-{[(2S)-1-[(2S,3R)-2-[(Z)-[(2S)-2-[(Z)-{2-[(Z)-{[(2S)-1-[(2S)-1-[(2S)-2-amino-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]pyrrolidin-2-yl](hydroxy)methylidene}amino]-1-hydroxyethylidene}amino]-1-hydroxy-3-phenylpropylidene]amino]-3-hydroxybutanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino]-1-hydroxy-4-methylpentylidene]amino]-5-carbamimidamidopentanoic acid

C48H77N15O11 (1039.5927)


Ornithokinin is found in animal foods. Ornithokinin is isolated from chicken blood. Isolated from chicken blood. Ornithokinin is found in animal foods.

   

PGP(20:1(11Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-{[(2R)-1-({hydroxy[(2S)-2-hydroxy-3-(phosphonooxy)propoxy]phosphoryl}oxy)-3-[(11Z)-icos-11-enoyloxy]propan-2-yl]oxy}-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C49H87NO16P2S (1039.5221)


PGP(20:1(11Z)/LTE4) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:1(11Z)/LTE4), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(LTE4/20:1(11Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-[(2R)-3-({hydroxy[(2S)-2-hydroxy-3-(phosphonooxy)propoxy]phosphoryl}oxy)-2-[(11Z)-icos-11-enoyloxy]propoxy]-3-oxopropyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C49H87NO16P2S (1039.5221)


PGP(LTE4/20:1(11Z)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(LTE4/20:1(11Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

CDP-DG(18:0/18:1(12Z)-2OH(9,10))

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C48H87N3O17P2 (1039.551)


CDP-DG(18:0/18:1(12Z)-2OH(9,10)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:1(12Z)-2OH(9,10)/18:0)

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)phosphinate

C48H87N3O17P2 (1039.551)


CDP-DG(18:1(12Z)-2OH(9,10)/18:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:1(12Z)-2OH(9,10)/18:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(i-18:0/18:1(12Z)-2OH(9,10))

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)phosphinate

C48H87N3O17P2 (1039.551)


CDP-DG(i-18:0/18:1(12Z)-2OH(9,10)) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(i-18:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

CDP-DG(18:1(12Z)-2OH(9,10)/i-18:0)

{[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)phosphinic acid

C48H87N3O17P2 (1039.551)


CDP-DG(18:1(12Z)-2OH(9,10)/i-18:0) is an oxidized CDP-diacylglycerol (CDP-DG). Oxidized CDP-diacylglycerols are glycerophospholipids in which a cytidine diphosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized CDP-diacylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. CDP-DG(18:1(12Z)-2OH(9,10)/i-18:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized CDP-DGs can be synthesized via three different routes. In one route, the oxidized CDP-DG is synthetized de novo following the same mechanisms as for CDP-DGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the CDP-DG backbone, mainly through the action of LOX (PMID: 33329396).

   

Polyfungin B (Nystatin A1, 10-deoxy-35-O-(2,6-dideoxy-L-ribo-hexopyranosyl)-)

Polyfungin B (Nystatin A1, 10-deoxy-35-O-(2,6-dideoxy-L-ribo-hexopyranosyl)-)

C53H85NO19 (1039.5715)


   

Ornithokinin

(2S)-2-[(2S)-2-{[(2S)-1-[(2S,3R)-2-[(2S)-2-(2-{[(2S)-1-{[(2S)-1-[(2S)-2-amino-5-[(diaminomethylidene)amino]pentanoyl]pyrrolidin-2-yl]carbonyl}pyrrolidin-2-yl]formamido}acetamido)-3-phenylpropanamido]-3-hydroxybutanoyl]pyrrolidin-2-yl]formamido}-4-methylpentanamido]-5-[(diaminomethylidene)amino]pentanoic acid

C48H77N15O11 (1039.5927)


   
   
   

CDP-DG(18:0/18:1(12Z)-2OH(9,10))

CDP-DG(18:0/18:1(12Z)-2OH(9,10))

C48H87N3O17P2 (1039.551)


   

CDP-DG(18:1(12Z)-2OH(9,10)/18:0)

CDP-DG(18:1(12Z)-2OH(9,10)/18:0)

C48H87N3O17P2 (1039.551)


   

CDP-DG(i-18:0/18:1(12Z)-2OH(9,10))

CDP-DG(i-18:0/18:1(12Z)-2OH(9,10))

C48H87N3O17P2 (1039.551)


   

CDP-DG(18:1(12Z)-2OH(9,10)/i-18:0)

CDP-DG(18:1(12Z)-2OH(9,10)/i-18:0)

C48H87N3O17P2 (1039.551)


   

Ac-(Cha)(Cpg)(Tic)M(betaPhPro)[S(oxaz)L]-NMe2

Ac-(Cha)(Cpg)(Tic)M(betaPhPro)[S(oxaz)L]-NMe2

C53H73N11O9S (1039.5313)


   

Hex3Cer 20:3;2O/16:4

Hex3Cer 20:3;2O/16:4

C54H89NO18 (1039.6079)


   

Hex3Cer 16:3;2O/20:4

Hex3Cer 16:3;2O/20:4

C54H89NO18 (1039.6079)


   

Hex3Cer 18:3;2O/18:4

Hex3Cer 18:3;2O/18:4

C54H89NO18 (1039.6079)


   

(10Z,13Z,16Z,19Z,22Z,25Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]octacosa-10,13,16,19,22,25-hexaenamide

(10Z,13Z,16Z,19Z,22Z,25Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]octacosa-10,13,16,19,22,25-hexaenamide

C54H89NO18 (1039.6079)


   

(9Z,12Z,15Z,18Z,21Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]tetracosa-9,12,15,18,21-pentaenamide

(9Z,12Z,15Z,18Z,21Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]tetracosa-9,12,15,18,21-pentaenamide

C54H89NO18 (1039.6079)


   

(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydecan-2-yl]hexacosa-5,8,11,14,17,20,23-heptaenamide

(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydecan-2-yl]hexacosa-5,8,11,14,17,20,23-heptaenamide

C54H89NO18 (1039.6079)


   

(4Z,7Z,10Z,13Z,16Z,19Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]docosa-4,7,10,13,16,19-hexaenamide

(4Z,7Z,10Z,13Z,16Z,19Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]docosa-4,7,10,13,16,19-hexaenamide

C54H89NO18 (1039.6079)


   

(10Z,13Z,16Z,19Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]docosa-10,13,16,19-tetraenamide

(10Z,13Z,16Z,19Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]docosa-10,13,16,19-tetraenamide

C54H89NO18 (1039.6079)


   

(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]octacosa-7,10,13,16,19,22,25-heptaenamide

(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]octacosa-7,10,13,16,19,22,25-heptaenamide

C54H89NO18 (1039.6079)


   

(6Z,9Z,12Z,15Z,18Z,21Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]tetracosa-6,9,12,15,18,21-hexaenamide

(6Z,9Z,12Z,15Z,18Z,21Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]tetracosa-6,9,12,15,18,21-hexaenamide

C54H89NO18 (1039.6079)


   

(7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]docosa-7,10,13,16,19-pentaenamide

(7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]docosa-7,10,13,16,19-pentaenamide

C54H89NO18 (1039.6079)


   

(8Z,11Z,14Z,17Z,20Z,23Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]hexacosa-8,11,14,17,20,23-hexaenamide

(8Z,11Z,14Z,17Z,20Z,23Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]hexacosa-8,11,14,17,20,23-hexaenamide

C54H89NO18 (1039.6079)


   

(5Z,8Z,11Z,14Z,17Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadeca-4,8-dien-2-yl]icosa-5,8,11,14,17-pentaenamide

(5Z,8Z,11Z,14Z,17Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadeca-4,8-dien-2-yl]icosa-5,8,11,14,17-pentaenamide

C54H89NO18 (1039.6079)


   

(3Z,6Z,9Z,12Z,15Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctadeca-4,8-dien-2-yl]octadeca-3,6,9,12,15-pentaenamide

(3Z,6Z,9Z,12Z,15Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctadeca-4,8-dien-2-yl]octadeca-3,6,9,12,15-pentaenamide

C54H89NO18 (1039.6079)